98%
921
2 minutes
20
As the main component of Brain-computer interface (BCI) technology, the classification algorithm based on EEG has developed rapidly. The previous algorithms were often based on subject-dependent settings, resulting in BCI needing to be calibrated for new users. In this work, we propose IMH-Net, an end-to-end subject-independent model. The model first uses Inception blocks extracts the frequency domain features of the data, then further compresses the feature vectors to extract the spatial domain features, and finally learns the global information and classification through Multi-Head Attention mechanism. On the OpenBMI dataset, IMH-Net obtained 73.90 ± 13.10% accuracy and 73.09 ± 14.99% F1-score in subject-independent manner, which improved the accuracy by 1.96% compared with the comparison model. On the BCI competition IV dataset 2a, this model also achieved the highest accuracy and F1-score in subject-dependent manner. The IMH-Net model we proposed can improve the accuracy of subject-independent Motor Imagery (MI), and the robustness of the algorithm is high, which has strong practical value in the field of BCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2023.2275244 | DOI Listing |
J Neurosci Methods
September 2025
Department of Computer Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India. Electronic address:
Background: Interpretation of motor imagery (MI) in brain-computer interface (BCI) applications is largely driven by the use of electroencephalography (EEG) signals. However, precise classification in stroke patients remains challenging due to variability, non-stationarity, and abnormal EEG patterns.
New Methods: To address these challenges, an integrated architecture is proposed, combining multi-domain feature extraction with evolutionary optimization for enhanced EEG-based MI classification.
Front Sports Act Living
August 2025
Faculty of Physical Education, China West Normal University, Nanchong, China.
Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.
View Article and Find Full Text PDFIntegr Med Res
March 2026
National Research Center in Complementary and Alternative Medicine (NAFKAM), Department of Community Medicine, Faculty of Health Sciences, The Arctic University of Norway UiT, Tromsø, Norway.
Background: Athroplastic surgery often results in acute post-operative pain, hindering rehabilitation compliance. To improve pain management and functional recovery, guided and motor imagery (GMI) exercises were introduced in hip and knee arthroplasty.
Methods: A pragmatic prospective mixed-methods implementation evaluation was conducted at the orthopaedic department of Schakelring, the Netherlands.
Cureus
September 2025
Rheumatology, University Hospitals Coventry & Warwickshire, Coventry, GBR.
Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that may develop after fractures, surgery, or soft tissue trauma. It is characterized by pain disproportionate to the initial injury, often accompanied by sensory, motor, autonomic, and trophic changes. Despite extensive research, pathophysiology remains unclear, and treatment approaches are varied, with inconsistent supporting evidence.
View Article and Find Full Text PDFBrain Stimul
September 2025
Department of Philosophy, University of Milan, Milan, via Festa Del Perdono, 7, 20122, Italy; Cognition in Action (CIA) Unit, PHILAB, University of Milan, Via Santa Sofia, 9, 20122, Italy. Electronic address:
Background: To investigate covert motor processes, transcranial magnetic stimulation (TMS) studies often use motor-evoked potentials (MEPs) as a proxy for inferring the state of motor representations. Typically, these studies test motor representations of actions that can be produced by the isolated contraction of one muscle, limiting both the number of recorded muscles and the complexity of tested actions. Furthermore, univariate analyses treat MEPs from different muscles as independent, overlooking potentially meaningful intermuscular relationships encoded in MEPs amplitude patterns at the single-trial level.
View Article and Find Full Text PDF