98%
921
2 minutes
20
Per- and polyfluoroalkyl substances (PFAS) are man-made organic compounds ubiquitously present in the environment. Due to their persistency and bioaccumulative nature, and because of increasingly stringent regulations of PFAS, their removal from the environment is necessary. Our initial study identified all-silica zeolite β as an alternative adsorbent with a high selectivity, affinity, and capacity for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. Here, we study the influence of the PFAS chain length on the affinity and capacity of a novel material, all-silica zeolite β, showing that the *BEA zeolite is an ideal sorbent for the removal of PFAS with 8 carbons. The solution pH and the addition of cations or natural organic substances to the water matrix have minimal influence on PFOA/PFOS removal with the zeolite. Next, regeneration of a PFOS-loaded zeolite was assessed; besides thermal, solvent-driven regeneration of the zeolite is also possible, using well-selected combinations of non-noxious solvents. Lastly, continuous adsorption experiments show that zeolite can be used for larger-scale applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c12321 | DOI Listing |
Dalton Trans
September 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The targeted synthesis of silicate zeolites with specific pore structures has been one of the great challenges for synthetic chemists. Herein, we report a new zeolite synthesis strategy for the preparation of high-silica and all-silica large-pore zeolites by utilizing hydroxyl-containing organic cations as structure-directing agents. These cations form hydrogen-bonding assemblies during the low-temperature aging stage, thereby directing the formation of the high-silica and all-silica zeolite NUD-19.
View Article and Find Full Text PDFDalton Trans
August 2025
Institute of New Energy, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Rapid and straightforward synthesis of all-silica zeolites is essential for scaling up their industrial applications in adsorption and separation. However, the synthesis typically necessitates the use of complex organic structure-directing agents (OSDAs) and/or fluoride, presenting challenges in the development of straightforward strategies. Herein, a siliceous TON zeolite, referred to as Si-TON, is successfully obtained without the need for any costly OSDAs, utilizing seeds and methanol as facilitating agents.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA.
A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.
View Article and Find Full Text PDFLangmuir
January 2025
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.
Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
We have performed a data science study of Monte Carlo (MC) simulation trajectories to understand factors that can accelerate the formation of zeolite nanoporous crystals, a process that can take days or even weeks. In previous work, MC simulations predicted and experiments confirmed that using a secondary organic structure-directing agent (OSDA) accelerates the crystallization of all-silica LTA zeolite, with experiments finding a three-fold speedup [Bores et al., Phys.
View Article and Find Full Text PDF