High-fat stimulation induces atrial neural remodeling by reducing NO production via the CRIF1/eNOS/P21 axi.

Lipids Health Dis

Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Autonomic remodeling of the atria plays a pivotal role in the development of atrial fibrillation (AF) and exerts a substantial influence on the progression of this condition. Hyperlipidemia is a predisposing factor for AF, but its effect on atrial nerve remodeling is unclear. The primary goal of this study was to explore the possible mechanisms through which the consumption of a high-fat diet (HFD) induces remodeling of atrial nerves, and to identify novel targets for clinical intervention.

Methods: Cell models were created in vitro by subjecting cells to palmitic acid (PA), while rat models were established by feeding them a high-fat diet. To investigate the interplay between cardiomyocytes and nerve cells in a co-culture system, we utilized Transwell cell culture plates featuring a pore size of 0.4 μm. The CCK-8 assay was employed to determine cell viability, fluorescent probe DCFH-DA and flow cytometry were utilized for measuring ROS levels, JC-1 was used to assess the mitochondrial membrane potential, the Griess method was employed to measure the nitric oxide (NO) level in the supernatant, a fluorescence-based method was used to measure ATP levels, and MitoTracker was utilized for assessing mitochondrial morphology. The expression of pertinent proteins was evaluated using western blotting (WB) and immunohistochemistry techniques. SNAP was used to treat nerve cells in order to replicate a high-NO atmosphere, and the level of nitroso was assessed using the iodoTMT reagent labeling method.

Results: The study found that cardiomyocytes' mitochondrial morphology and function were impaired under high-fat stimulation, affecting nitric oxide (NO) production through the CRIF1/SIRT1/eNOS axis. In a coculture model, overexpression of eNOS in cardiomyocytes increased NO expression. Moreover, the increased Keap1 nitrosylation within neuronal cells facilitated the entry of Nrf2 into the nucleus, resulting in an augmentation of P21 transcription and a suppression of proliferation. Atrial neural remodeling occurred in the HFD rat model and was ameliorated by increasing myocardial tissue eNOS protein expression with trimetazidine (TMZ).

Conclusions: Neural remodeling is triggered by high-fat stimulation, which decreases the production of NO through the CRIF1/eNOS/P21 axis. Additionally, TMZ prevents neural remodeling and reduces the occurrence of AF by enhancing eNOS expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629039PMC
http://dx.doi.org/10.1186/s12944-023-01952-7DOI Listing

Publication Analysis

Top Keywords

neural remodeling
16
high-fat stimulation
12
atrial neural
8
production crif1/enos/p21
8
high-fat diet
8
nerve cells
8
nitric oxide
8
mitochondrial morphology
8
remodeling
7
high-fat
5

Similar Publications

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation.

J Genet Genomics

September 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh

Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.

View Article and Find Full Text PDF

Response Characteristics of Barrel Cortical Neurons in Layers IV/V of Juvenile Rats with Autism-Like Traits after Tactile Stimulation.

Physiol Behav

September 2025

Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

The barrel cortex is a specialized region of the primary somatosensory cortex that processes tactile information from whiskers. This study investigates how tactile stimulation (TS) affects excitatory receptive fields and surrounds suppression in barrel cortex neurons of male and female autistic-like rats, using various whisker displacement protocols. The animals were categorized into control, Valproic acid pre-treated (Val), and Val-TS treatment groups.

View Article and Find Full Text PDF

Drug-resistant epilepsy (DRE) is frequently characterized by pathological mossy fiber sprouting (MFS), which is a defining indicator of aberrant synaptic remodeling within the hippocampus. Despite extensive investigations of the molecular underpinnings of MFS, they remain only partially elucidated. Synaptic vesicle protein 2A (SV2A) is a key modulator of neurotransmitter exocytosis that has been associated with epileptogenesis.

View Article and Find Full Text PDF

POU6F1 promote lumbar motor circuit reorganization following spinal cord injury.

Neurobiol Dis

September 2025

Mudanjiang Collaborative Innovation Center for development and application of Northern Medicine Resources, Mudanjiang, PR China; Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China. Electronic address:

Spinal cord injury (SCI) causes irreversible motor deficits due to disrupted lumbar circuitry. However, transcriptional mechanisms in distal lumbar circuits are poorly understood. We identify POU6F1 as a critical transcriptional regulator in spinal lumbar segment (SLS, L3-L5) motor circuit regeneration.

View Article and Find Full Text PDF

Chromodomain Helicase DNA-binding (CHD) proteins compose a family of chromatin remodelers that play crucial roles in DNA repair and gene expression regulation, neural stem cell differentiation and chromatin integrity. Genetic variants in CHD chromatin remodelers are associated with neurodevelopmental disorders with features like autism spectrum disorder and intellectual disability. Consequently, the determination of variant pathogenicity in clinical genetic tests for individuals bearing CHD variants is crucial.

View Article and Find Full Text PDF