98%
921
2 minutes
20
Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear. Here we employ solid-state NMR spectroscopy to compare the cell wall architecture of Aspergillus sydowii across salinity gradients. Analyses of intact cells reveal that A. sydowii cell walls contain a rigid core comprising chitin, β-glucan, and chitosan, shielded by a surface shell composed of galactomannan and galactosaminogalactan. When exposed to hypersaline conditions, A. sydowii enhances chitin biosynthesis and incorporates α-glucan to create thick, stiff, and hydrophobic cell walls. Such structural rearrangements enable the fungus to adapt to both hypersaline and salt-deprived conditions, providing a robust mechanism for withstanding external stress. These molecular principles can aid in the optimization of halophilic strains for biotechnology applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625518 | PMC |
http://dx.doi.org/10.1038/s41467-023-42693-6 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
The rice foot rot disease caused by Dickeya oryzae is an important bacterial disease that could cause tremendous economic losses. The virulence factor modulating cluster (Vfm) quorum sensing (QS) system, a major virulence regulatory mechanism conserved in the Dickeya genus, controls the production of zeamines and various extracellular cell wall degradation enzymes in D. oryzae.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China. Electronic address:
This study reported a modified hydrothermal solvent method for preparing lignin microspheres (LNSs) with controllable size and morphology by precisely regulating the reaction temperature (160-220 °C). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to evaluate the structure, morphological, and dimensional attributes of lignin microspheres, and the synthesis mechanism was discussed. The antibacterial efficacy of the hydrothermally treated lignin microspheres (HTLNSs) was evaluated through phosphate-buffered saline (PBS) culture assays, as well as by assessing nucleic acid and protein leakage, and their inhibitory effect on cell membrane permeability.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; Sichuan Ecological Protection and Construction Engineering Technology Research Centre, Sichuan University, Chengdu, 610065, China. Electronic address: sh
Toxic metal ion contamination poses a significant environmental challenge, severely impacting plant growth, development, and reproduction. To cope with metal-induced stress, plants have evolved diverse molecular and physiological mechanisms. Among these, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family, which encodes enzymes responsible for cell wall remodeling, plays a crucial role in enhancing plant resilience to metal ion stress.
View Article and Find Full Text PDFPlant Commun
September 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, International Research Center for Plant Cell Wall, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Int J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDF