Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glioblastoma (GBM), isolated brain metastasis (SBM), and primary central nervous system lymphoma (PCNSL) possess a high level of similarity in histomorphology and clinical manifestations on multimodal MRI. Such similarities have led to challenges in the clinical diagnosis of these three malignant tumors. However, many existing models solely focus on either the task of segmentation or classification, which limits the application of computer-aided diagnosis in clinical diagnosis and treatment. To solve this problem, we propose a multi-task learning transformer with neural architecture search (NAS) for brain tumor segmentation and classification (BTSC-TNAS). In the segmentation stage, we use a nested transformer U-shape network (NTU-NAS) with NAS to directly predict brain tumor masks from multi-modal MRI images. In the tumor classification stage, we use the multiscale features obtained from the encoder of NTU-NAS as the input features of the classification network (MSC-NET), which are integrated and corrected by the classification feature correction enhancement (CFCE) block to improve the accuracy of classification. The proposed BTSC-TNAS achieves an average Dice coefficient of 80.86% and 87.12% for the segmentation of tumor region and the maximum abnormal region in clinical data respectively. The model achieves a classification accuracy of 0.941. The experiments performed on the BraTS 2019 dataset show that the proposed BTSC-TNAS has excellent generalizability and can provide support for some challenging tasks in the diagnosis and treatment of brain tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2023.102307 | DOI Listing |