Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Single-cell sorting is essential to explore cellular heterogeneity in biology and medicine. Recently developed Raman-activated cell sorting (RACS) circumvents the limitations of fluorescence-activated cell sorting, such as the cytotoxicity of labels. However, the sorting throughputs of all forms of RACS are limited by the intrinsically small cross-section of spontaneous Raman scattering. Here, we report a stimulated Raman-activated cell ejection (S-RACE) platform that enables high-throughput single-cell sorting based on high-resolution multi-channel stimulated Raman chemical imaging, image decomposition, and laser-induced cell ejection. The performance of this platform was illustrated by sorting a mixture of 1 μm polymer beads, where 95% yield, 98% purity, and 14 events per second throughput were achieved. Notably, our platform allows live cell ejection, allowing for the growth of single colonies of bacteria and fungi after sorting. To further illustrate the chemical selectivity, lipid-rich cells were successfully sorted from a mixture with , confirmed by downstream quantitative PCR. Furthermore, by integrating a closed-loop feedback control circuit into the system, we realized real-time single-cell imaging and sorting, and applied this method to precisely eject regions of interest from a rat brain tissue section. The reported S-RACE platform opens exciting opportunities for a wide range of single-cell applications in biology and medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614813 | PMC |
http://dx.doi.org/10.1101/2023.10.16.562526 | DOI Listing |