98%
921
2 minutes
20
The Natura 2000 (N2K) protected area (PA) network is a crucial tool to limit biodiversity loss in Europe. Despite covering 18% of the European Union's (EU) land area, its effectiveness at conserving biodiversity across taxa and biogeographic regions remains uncertain. Testing this effectiveness is, however, difficult because it requires considering the nonrandom location of PAs, and many possible confounding factors. We used propensity score matching and accounted for the confounding effects of biogeographic regions, terrain ruggedness, and land cover to assess the effectiveness of N2K PAs on the distribution of 1769 species of conservation priority in the EU's Birds and Habitats Directives, including mammals, birds, amphibians, reptiles, arthropods, fishes, mollusks, and vascular and nonvascular plants. We compared alpha, beta, and gamma diversity between matched selections of protected and unprotected areas across EU's biogeographic regions with generalized linear models, generalized mixed models, and nonparametric tests for paired samples, respectively, for each taxonomic group and for the entire set of species. PAs in N2K hosted significantly more priority species than unprotected land, but this difference was not consistent across biogeographic regions or taxa. Total alpha diversity and alpha diversity of amphibians, arthropods, birds, mammals, and vascular plants were significantly higher inside PAs than outside, except in the Boreal biogeographical region. Beta diversity was in general significantly higher inside N2K PAs than outside. Similarly, gamma diversity had the highest values inside PAs, with some exceptions in Boreal and Atlantic regions. The planned expansion of the N2K network, as dictated by the European Biodiversity Strategy for 2030, should therefore target areas in the southern part of the Boreal region where species diversity of amphibians, arthropods, birds, mammals, and vascular plants is high and species are currently underrepresented in N2K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.14212 | DOI Listing |
Environ Res
September 2025
Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Xizang University, Lhasa 850000, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Glacial lakes play a vital role as indicators of global climate change and regional environmental responses. Eukaryotic planktonic microorganisms, pivotal in driving biogeochemical cycling of nutrients within these ecosystems, are crucial for preserving stability and ecological function of glacial lake environments. Nevertheless, the spatial and temporal dynamics, along with the mechanisms responsible for sustaining eukaryotic planktonic microbial communities in glacial lakes, especially during the glacier retreat and lake formation, are still largely uncharted.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Mammals often follow peculiar evolutionary trajectories on islands, with some Pleistocene insular large mammals exhibiting reduced relative brain size. However, the antiquity of this phenomenon remains unclear. Here, we report the first digital endocast of an insular artiodactyl, the five-horned ruminant from the Late Miocene Gargano palaeo-island (Apulia, Italy).
View Article and Find Full Text PDFFront Fungal Biol
August 2025
School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
is a well-known species morphologically characterized by coralloid and leathery basidiomata with numerous fuscous purple to blackish-brown branches. It was once considered to exhibit a wide ecological range and distribution area. However, comprehensive phylogenetic analysis based on four loci (ITS, nrLSU, , and nrSSU) revealed that represents a species complex consisting of at least 12 cryptic taxa, with a biogeographic distribution pattern bounded by geographic regions: Asia, Eurasia, Europe, and North America.
View Article and Find Full Text PDFPhytoKeys
August 2025
Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
The currently polyphyletic genus Roxb. (Zingiberaceae) has over 260 species widely spread through subtropical and tropical Asia and a complex taxonomic history. This study focuses on the "Carolinensis" clade of hitherto suggested by molecular evidence.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea.
Background: Climate change is anticipated to significantly impact the biogeographic distribution of snakes, leading to notable shifts in their habitats toward anthropogenic landscapes. This may potentially increase the incidence of Big Four species (Bungarus caeruleus, Daboia russelii, Echis carinatus, and Naja naja) envenomation, a notable human-health risk that has not yet been assessed in India being the most affected country in South Asia. Therefore, this study integrates species distributions with socioeconomic and healthcare data to prioritize areas for targeted interventions to mitigate the envenomation risks effectively in India.
View Article and Find Full Text PDF