Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The brain is constituted of heterogeneous types of neuronal and non-neuronal cells, which are organized into distinct anatomical regions, and show precise regulation of gene expression during development, aging and function. In the current database release, STAB2 provides a systematic cellular map of the human and mouse brain by integrating recently published large-scale single-cell and single-nucleus RNA-sequencing datasets from diverse regions and across lifespan. We applied a hierarchical strategy of unsupervised clustering on the integrated single-cell transcriptomic datasets to precisely annotate the cell types and subtypes in the human and mouse brain. Currently, STAB2 includes 71 and 61 different cell subtypes defined in the human and mouse brain, respectively. It covers 63 subregions and 15 developmental stages of human brain, and 38 subregions and 30 developmental stages of mouse brain, generating a comprehensive atlas for exploring spatiotemporal transcriptomic dynamics in the mammalian brain. We also augmented web interfaces for querying and visualizing the gene expression in specific cell types. STAB2 is freely available at https://mai.fudan.edu.cn/stab2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767951PMC
http://dx.doi.org/10.1093/nar/gkad955DOI Listing

Publication Analysis

Top Keywords

mouse brain
20
human mouse
16
brain
8
gene expression
8
cell types
8
subregions developmental
8
developmental stages
8
human
5
mouse
5
stab2
4

Similar Publications

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain.

PLoS Comput Biol

September 2025

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.

Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.

View Article and Find Full Text PDF

This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.

View Article and Find Full Text PDF

IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.

View Article and Find Full Text PDF

Multimode neural population coding of diverse innate fear response by mitral and tufted cells.

Cell Rep

September 2025

International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Neurons that encode odor information are fundamental to innate fear processes, yet how mitral/tufted (M/T) cells encode innate fear remains unknown. Here, we identify three different response patterns of M/T cells in the dorsal olfactory bulb (dOB) during active avoidance elicited by non-dehydrogenated 2,4,5-trimethylthiazole (nTMT) through in vivo calcium imaging and multielectrode recordings in mice, including enhanced responses, suppressed responses, and no response. Remarkably, suppressed response M/T cells encode active avoidance, whereas suppressed and enhanced response M/T cells jointly encode passive freezing.

View Article and Find Full Text PDF