98%
921
2 minutes
20
We report a collision-induced dissociation (CID) based gas phase rearrangement study using quadrupole time-of-flight mass spectrometry coupled with liquid chromatography on a novel endothelin and angiotensin II receptor antagonist, sparsentan. We performed tandem mass spectrometry to identify precursor and fragment ion relationships and assigned structures for major fragment ions. We propose a benzyl migration mechanism based on bond length measurements in density functional theory (B3LYP/6-31+G*) optimized geometries of protonated sparsentan and its m/z 547 fragment. Protonated sparsentan undergoes loss of ethanol, which yields a resonance-stabilized benzylic cation with m/z 547, which further fragments into m/z 353 via benzyl migration, where the benzylic cation migrates to one of the nucleophilic nitrogen atoms followed by proton transfer from the sulfonamide nitrogen to a carbonyl oxygen, resulting in a neutral loss of mass 194. Further fragmentation of m/z 353 results in m/z 258, which undergoes radical and neutral loss to yield m/z 193 and 194, respectively. The proposed mechanism of generation of m/z 353 was confirmed by CID of deuterated sparsentan. Considering the importance of gas phase rearrangements of organic molecules in structural identifications as well as the novelty of the molecule, these findings will be helpful for future studies to predict gas phase benzyl migration in sparsentan analogs and for degradation product and metabolite identification of sparsentan and its analogs using LC-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.4980 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.
Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.
View Article and Find Full Text PDFBiomater Adv
September 2025
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
Tailoring surface characteristics is key to guiding scaffold interaction with the biological environment, promoting successful biointegration while minimizing immune responses and inflammation. In cardiac tissue engineering, polyvinylidene fluoride (PVDF) is a material of choice for its intrinsic piezoelectric properties, which can be enhanced through electrospinning, also enabling the fabrication of nanofibrous structures mimicking native tissue. However, the inherent hydrophobicity of PVDF can hinder its integration with biological tissues.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.
Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China; Key Laboratory of Soil and Groundwater Pollution Control and Green Restoration, Sinopec, China.
Surfactant-enhanced aquifer remediation (SEAR) is an effective strategy for removing dense non-aqueous phase liquids (DNAPLs) from contaminated groundwater. While Gemini surfactants possess unique dimeric structures and excellent physicochemical properties, the role of hydrophobic chain length in governing their solubilization performance has not been systematically clarified. Here, five sugar-based anionic-nonionic Gemini surfactants (SANG 06, 08, 09, 10, and 13) with different hydrophobic chain lengths were synthesized and evaluated.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.
View Article and Find Full Text PDF