Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spark discharge generators (SDGs) employ controlled gaseous environments to induce spark ablation of non-insulating electrodes, resulting in the formation of various nanostructures in the gas phase. The method offers technological advantages such as continuous particle production, scalable yield, and minimal waste. Additionally, the versatility of the process enables the generation of alloy nanoparticles from various material combinations, including immiscible ones. In order to fully exploit its potential, understanding the atomic mixing process during electrode ablation, particularly in the case of dissimilar electrodes, is crucial. Temporally and spatially resolved optical emission spectroscopy (OES) has been previously demonstrated as an effective characterization tool for spark plasmas in SDGs. However, to gain a deeper insight into the vapor mixing process, it is essential to quantitatively determine the plasma composition in both space and time. This paper introduces a calibration-free OES-based method tailored for spark plasmas utilized in binary nanoparticle generation. The method introduces the so-called multi-element combinatory Boltzmann plots, which use intensity ratios of emission atomic lines from different materials, allowing for the direct estimation of total number concentration ratios. The approach is tested using synthetic spectra and validated with experimental spark spectra obtained near an alloyed gold-silver (AuAg) electrode with a known composition. The study demonstrates the capabilities and robustness of the proposed method, with a focus on the AuAg system due to its significance in plasmonic research and frequent synthesis using spark ablation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00037028231207358DOI Listing

Publication Analysis

Top Keywords

optical emission
8
spark discharge
8
binary nanoparticle
8
synthesis spark
8
spark ablation
8
mixing process
8
spark plasmas
8
spark
7
method
5
calibration-free optical
4

Similar Publications

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

Understanding how molecular aggregation influences nonlinear optical properties is essential for advancing organic fluorophores in imaging, sensing, and photonic applications. However, the relationship between the molecular aggregation and the magnitude of nonlinear two-photon absorption cross-section remains underexplored. Here, we systematically investigate the aggregation-dependent two-photon absorption properties of the fluorophore TPAPhCN by tuning the degree of aggregation.

View Article and Find Full Text PDF

Ultra-sensitivity real-time water pollution detection based on non-Hermitian topolectrical circuit.

J Hazard Mater

September 2025

Key Laboratory of advanced optoelectronic quantum architecture and measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China. Electronic address:

Ultra-sensitivity water pollution detection is the key to ensuring clean and safe management of water resources. However, most existing high-sensitivity water pollution detection systems rely on expensive and bulky laboratory equipment, which makes the systems non-portable. Meanwhile, most reported portable detection systems cannot meet the requirements for sensitivity and robustness in complex environments.

View Article and Find Full Text PDF

Synthesis and Optical Properties of Unsymmetric Aromatically π-Extended BODIPY.

J Org Chem

September 2025

School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.

A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.

View Article and Find Full Text PDF

[Cu(3-bph)(PABA)(HO)] () (3-bph = ,'-bis(3-pyridylmethylene)hydrazine and PABA = -amino benzoate) is a pyridyl-N bridging Cu coordination polymer, and PABA acts as a carboxylate-O donor forming a square pyramidal CuNO motif following a zigzag one-dimensional (1D) lattice. The shows weak antiferromagnetic coupling ( = -0.196(1) cm), and emission appears at 352 nm (λ = 293 nm), which is selectively quenched by Fe via the FRET mechanism.

View Article and Find Full Text PDF