Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Costunolide (COST) is a sesquiterpene lactone that belongs to the germacranolide group, and occurs mainly in Saussurea lappa Clarke. Although COST inhibits the proliferation and metastasis of cancer cells and induces their apoptosis, it suffers poor water solubility and cellular permeability. Therefore, this study aimed to enhance the anti-proliferative activity of COST in LS174T colon cancer cells through its inclusion in bilosomal nanoformulation (COST-BILs). The optimized BIL formula contained cholesterol and Span-85 in a molar ratio of 1:5 as well as bile salt at a molar concentration of 0.5 mM, with entrapment efficiency of 63.4 ± 3.59 % and particle size of 119.7 ± 3.63 nm. The optimized COST-BILs showed a potent cytotoxic effect against LS174T cells with an IC of 6.20 µM; meanwhile, raw COST had an IC of 15.78 µM. Safety and relative selectivity were confirmed in the normal human colonic epithelial cells (HCoEpC). Cell cycle analysis indicated that both raw COST and COST-BILs significantly increased the fraction of LS174T cells in the sub-G1 phase. This was accompanied by a significant enhancement of early, late, and total apoptosis, as indicated by annexin-V staining. In addition, COST-BILs exhibited more potent activity in up-regulating CASP3, TP53, and BAX, and in down-regulating the expression of BCL2 mRNA as compared to raw COST. Further, the prepared formula enhanced the release of cytochrome C as well as the generation of reactive oxygen species (ROS) and reduced the integrity of mitochondrial membranes. In conclusion, the loading of COST on BILs significantly enhances its pro-apoptotic activity in LS174T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115757DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
ls174t cells
12
raw cost
12
pro-apoptotic activity
8
ls174t colon
8
colon cancer
8
cells
7
cost
7
ls174t
5
optimized bilosome-based
4

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF