98%
921
2 minutes
20
The application of biochar as an additive to enhance the anaerobic digestion (AD) of biomass has been extensively studied from various perspectives. This study reported, for the first time, the influence of biochar incubation in the inoculum on the anaerobic fermentation of glucose in a batch-type reactor over 20 days. Three groups of inoculum with the same characteristics were pre-mixed once with biochar for different durations: 21 days (D21), 10 days (D10), and 0 days (D0). The BC was mixed in the inoculum at a concentration of 8.0 g/L. The proportion of the inoculum and substrate was adjusted to an inoculum-to-substrate ratio of 2.0 based on the volatile solids. The results of the experiment revealed that D21 had the highest cumulative methane yield, of 348.98 mL, compared to 322.66, 290.05, and 25.15 mL obtained from D10, D0, and the control, respectively. Three models-modified Gompertz, first-order, and Autoregressive Integrated Moving Average (ARIMA)-were used to interpret the biomethane production. All models showed promising fitting of the cumulative biomethane production, as indicated by high R2 and low RMSE values. Among these models, the ARIMA model exhibited the closest fit to the actual data. The biomethane production rate, derived from the modified Gompertz Model, increased as the incubation period increased, with D21 yielding the highest rate of 31.13 mL/gVS. This study suggests that the application of biochar in the anaerobic fermentation of glucose, particularly considering the short incubation period, holds significant potential for improving the overall performance of anaerobic digestion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608094 | PMC |
http://dx.doi.org/10.3390/ma16206655 | DOI Listing |
Water Res
August 2025
Westlake Laboratory of Life Sciences and Biomedicine, Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou 310024, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Research Center for Industries of the Future, School of Engin
Livestock wastewater is a critical reservoir of antibiotic resistance genes (ARGs) that poses significant public health risks. This study comprehensively evaluated the seasonal dynamics and associated risks of ARGs in a full-scale livestock wastewater treatment plant using an integrated metagenomic and metatranscriptomic approach. The results showed that untreated livestock wastewater harbored high abundance (4.
View Article and Find Full Text PDFBioresour Technol
September 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).
View Article and Find Full Text PDFEnviron Technol
September 2025
School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China.
Food waste (FW) has high production potential that can be converted into renewable energy in the form of biogas during anaerobic digestion (AD). Batch tests under mesophilic (37°) disgestion were performed to evaluate the effects of different dosage ratios (10-35%), salts (0-20 g·L) and oil content (0-20 g·L) on methane (CH) production, process stability and organic reduction during the AD. The results showed that optimal CH occurred at a dosage ratio of 20%, while ratios > 30% caused inhibition.
View Article and Find Full Text PDFBioresour Technol
September 2025
Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
The recovery of lactic acid (LA) from the co-fermentation of food waste and waste activated sludge is shifting from feasibility studies to process optimization and predictive modeling. This study extends the widely used International Water Association Anaerobic Digestion Model No.1 (ADM1) by incorporating lactic acid bacteria-mediated pathways and adjusted stoichiometry to simulate LA generation from sugars, implemented in the GPS-X simulation platform.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China. Electronic address:
Thermal hydrolysis pretreatment coupled with anaerobic digestion (THP-AD) substantially improves the energy recovery from sludge; however, its high thermal energy input often undermines overall system efficiency. This study developed a machine-learning-driven optimisation framework. The results indicated that, compared to the other three models, extreme gradient boosting achieved the highest predictive performance (R > 0.
View Article and Find Full Text PDF