Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biochar is usually considered as an organic improver which can improve soil and increase crop yields. However, the unrestricted application of biochar to normal-fertility farmland will cause chemical stress on crops and affect agricultural production. At present, the effects and mechanisms of high-dose applications of biochar on rice ( L.) production and soil biological characteristics have not been fully studied. In this greenhouse pot experiment, combined with soil microbial metagenomics, three treatments in triplicates were conducted to explore the responses of rice production, soil chemical properties, and soil biological properties to high-dose applications of biochar (5%, /) prepared using peanut waste (peanut hulls and straw). The results show that peanut hulls, with a loose texture and pore structure, are a raw material with stronger effects for preparing biochar than peanut straw in terms of its physical structure. In a rice monoculture system, high-dose applications of biochar (5%, /) can slightly increase the grains per spike, while significantly inhibiting the spike number per pot and the percentage of setting. High-dose applications of biochar also have significant negative effects on the diversity and stability of soil bacterial and archaeal communities. Moreover, the microbial metabolism and nutrient cycling processes are also significantly affected by changing the soil carbon/nitrogen ratio. This study discusses the response mechanisms of rice production and soil biology to high-dose biochar applications, and complements the understanding of irrational biochar application on agricultural production and land sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606461PMC
http://dx.doi.org/10.3390/ijms242015043DOI Listing

Publication Analysis

Top Keywords

rice production
16
high-dose applications
16
applications biochar
16
production soil
12
biochar
10
soil
9
high-dose biochar
8
biochar application
8
soil microbial
8
microbial metagenomics
8

Similar Publications

Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF

Agriculture is extremely vulnerable to climate change and crop production is severely hampered by climate extremes. Not only does it cost growers over US$170Bln in lost production, but it also has major implications for global food security. In this study, we argue that, under current climate scenarios, agriculture in the 21 century will become saline, severely limiting (or even making impossible) the use of traditional cereal crops for human caloric intake.

View Article and Find Full Text PDF

Introduction: Rice is an important food crop but is susceptible to diseases. However, currently available spot segmentation models have high computational overhead and are difficult to deploy in field environments.

Methods: To address these limitations, a lightweight rice leaf spot segmentation model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was developed for three common rice leaf diseases: rice blast, brown spot and bacterial leaf blight.

View Article and Find Full Text PDF

By connecting laboratory dynamics with cosmic observables, this work highlights the critical role of reactions between highly reactive species in shaping the molecular inventory of the interstellar medium and opens new windows into the spectroscopically elusive corners of astrochemical complexity. The gas phase formation of distinct CH isomers is explored through the bimolecular reaction of tricarbon (C, XΣ ) with the vinyl radical (CH, XA') at a collision energy of 44 ± 1 kJ mol employing the crossed molecular beam technique augmented by electronic structure and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. This barrierless and exoergic reaction follows indirect dynamics and is initiated by the addition of tricarbon to the radical center of the vinyl radical forming a symmetric doublet collisional complex (CCCCHCH).

View Article and Find Full Text PDF