Design and deep learning of synthetic B-cell-specific promoters.

Nucleic Acids Res

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic biology and deep learning synergistically revolutionize our ability for decoding and recoding DNA regulatory grammar. The B-cell-specific transcriptional regulation is intricate, and unlock the potential of B-cell-specific promoters as synthetic elements is important for B-cell engineering. Here, we designed and pooled synthesized 23 640 B-cell-specific promoters that exhibit larger sequence space, B-cell-specific expression, and enable diverse transcriptional patterns in B-cells. By MPRA (Massively parallel reporter assays), we deciphered the sequence features that regulate promoter transcriptional, including motifs and motif syntax (their combination and distance). Finally, we built and trained a deep learning model capable of predicting the transcriptional strength of the immunoglobulin V gene promoter directly from sequence. Prediction of thousands of promoter variants identified in the global human population shows that polymorphisms in promoters influence the transcription of immunoglobulin V genes, which may contribute to individual differences in adaptive humoral immune responses. Our work helps to decipher the transcription mechanism in immunoglobulin genes and offers thousands of non-similar promoters for B-cell engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681721PMC
http://dx.doi.org/10.1093/nar/gkad930DOI Listing

Publication Analysis

Top Keywords

deep learning
12
b-cell-specific promoters
12
promoters synthetic
8
b-cell engineering
8
immunoglobulin genes
8
b-cell-specific
5
promoters
5
design deep
4
learning synthetic
4
synthetic b-cell-specific
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF