98%
921
2 minutes
20
Although Sn has been intensively studied as one of the most promising anode materials to replace commercialized graphite, its cycling and rate performances are still unsatisfactory owing to the insufficient control of its large volume change during cycling and poor electrochemical kinetics. Herein, we propose a Sn-TiO-C ternary composite as a promising anode material to overcome these limitations. The hybrid TiO-C matrix synthesized via two-step high-energy ball milling effectively regulated the irreversible lithiation/delithiation of the active Sn electrode and facilitated Li-ion diffusion. At the appropriate C concentration, Sn-TiO-C exhibited significantly enhanced cycling performance and rate capability compared with its counterparts (Sn-TiO and Sn-C). Sn-TiO-C delivers good reversible specific capacities (669 mAh g after 100 cycles at 200 mA g and 651 mAh g after 500 cycles at 500 mA g) and rate performance (446 mAh g at 3000 mA g). The superiority of Sn-TiO-C over Sn-TiO and Sn-C was corroborated with electrochemical impedance spectroscopy, which revealed faster Li-ion diffusion kinetics in the presence of the hybrid TiO-C matrix than in the presence of TiO or C alone. Therefore, Sn-TiO-C is a potential anode for next-generation Li-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609529 | PMC |
http://dx.doi.org/10.3390/nano13202757 | DOI Listing |
ACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFLangmuir
September 2025
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
The study addresses the critical issue of sepsis diagnosis, a life-threatening condition triggered by the body's immune response to infection that leads to mortality. Current diagnostic methods rely on the time-consuming assessment of multiple biomarkers by a series of tests, leading to delayed treatment. Here, we report a platform for developing a point-of-care (POC) device utilizing electrochemical immunosensors for the dual and rapid detection of sepsis biomarkers: Procalcitonin (PCT), Interleukin-6 (IL-6), and C-reactive protein (CRP) as host markers and lipopolysaccharide (LPS) as a pathogen marker.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFElectronic textiles are a transformative technology set to revolutionize next-generation wearable devices. However, a major challenge is making efficient yarn-based energy systems that power flexible wearables while blending seamlessly into textiles for unobstructed applications. Herein, 2D materials-coated yarn supercapacitors (YSCs) are designed, offering a promising solution through capacitance-matched electrode fabrication and a novel customizable riveted interconnection strategy for textile integration.
View Article and Find Full Text PDFSnS (tin disulfide) is a promising anode active material for lithium-ion batteries (LIBs) due to its high theoretical capacity and low material cost. Conventional synthesis methods, such as solvothermal, hydrothermal, and solid-state, require long synthesis times, the use of solvents and surfactants, and several separation steps. However, the preparation of coated SnS composites using liquid media is even more complex, requiring suitable precursors, compatible solvents, and potentially several steps.
View Article and Find Full Text PDF