98%
921
2 minutes
20
During extracorporeal membrane oxygenation (ECMO) blood is exposed to artificial surfaces, resulting in contact activation of the intrinsic coagulation pathway initiated by coagulation factor XII (FXII). Little is known about the prevalence of acquired FXII-deficiency, especially during ECMO. The primary outcome was the prevalence of acquired FXII-deficiency (FXII activity <60%) during ECMO. Secondary outcomes included differences in hemorrhagic/thromboembolic complications, doses of unfractionated heparin administered, and time points of anticoagulation within target ranges between patients with and without FXII-deficiency. Of 193 adults receiving ECMO therapy between 2013 and 2021, FXII testing was performed in 64 (33%) patients. Of these, 89% ( n = 57) had an acquired FXII-deficiency. Median complication-free intervals were not different between patients with and without acquired FXII-deficiency (bleeding: 28 days [6-145] vs. 12 days [11-not available], p = 0.85; thromboembolism: 16 days [8-54] vs. 13 days [3-15], p = 0.053). Patients with acquired FXII-deficiency received less heparin (16,554 IU/day vs. 25,839 IU/day; p = 0.009) and were less likely to be within aPTT-target ranges (23.1% [14.3%-36.4%] vs. 37.8% [33.7%-58.3%], p = 0.005). Acquired FXII-deficiency is common during ECMO and may affect monitoring of anticoagulation. The impact of FXII-activity on complications needs to be determined in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAT.0000000000002085 | DOI Listing |
Cardiol Young
September 2025
Department of Anesthesiology and Reanimation, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey.
Objectives: This study aimed to evaluate the predictive accuracy of Paediatric Risk of Mortality-III, Paediatric Index of Mortality-II, and Paediatric Logistic Organ Dysfunction scoring systems for major adverse events following congenital heart surgery.
Methods: This prospective observational study included patients under 18 years of age who were admitted to the ICU for at least 24 hours postoperatively following congenital heart surgery. Major adverse events were defined as a composite of 30-day mortality, ICU readmission, reintubation, acute neurologic events, requirement for extracorporeal membrane oxygenation, cardiac arrest requiring cardiopulmonary resuscitation, need for a permanent pacemaker, acute kidney injury, or unplanned reoperation.
FASEB J
September 2025
School of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.
Extracorporeal membrane oxygenation (ECMO) is a high-risk, invasive therapy that sustains life through an external system. However, it often leads to complications such as bleeding, thrombosis, infection, and acute kidney injury (AKI). While up to 70% of ECMO patients develop AKI, the mechanisms driving this injury remain unclear, and effective treatments are limited.
View Article and Find Full Text PDFJ Am Coll Cardiol
September 2025
Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.
Background: The hemodynamic effects of femoro-femoral venoarterial (VA) extracorporeal membrane oxygenation (ECMO) on pulmonary capillary wedge pressure (PCWP) remain poorly defined. High ECMO flow is believed to increase PCWP and the risk of pulmonary edema; yet, supporting in vivo physiological data are lacking.
Objectives: The purpose of this study was to evaluate the impact of incremental femoro-femoral VA-ECMO flow variations on PCWP, hemodynamic, and echocardiographic parameters in patients with cardiogenic shock during the early phase of VA-ECMO support, after stabilization.
Eur Heart J Open
September 2025
Calderdale and Huddersfield NHS Foundation Trust, Acre St, Lindley, Huddersfield HD3 3EA, UK.
Aims: Cardiogenic shock remains a significant cause of mortality despite multiple advancements in medical interventions. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) provides crucial circulatory support but also increases left ventricular (LV) after-load, potentially worsening outcomes. Effective LV unloading strategies can enhance patient survival during VA-ECMO treatment.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.
Harlequin syndrome, also known as differential hypoxia (DH) or North-South syndrome, is a serious complication of femoro-femoral venoarterial extracorporeal membrane oxygenation (V-A ECMO). Moreover, Harlequin syndrome is caused by competing flows between the retrograde oxygenated ECMO output and the anterograde ejection of poorly oxygenated blood from the native heart. In the setting of impaired pulmonary gas exchange, the addition of an Impella device (ECPELLA configuration), although beneficial for ventricular unloading and hemodynamic support, may further exacerbate this competition and precipitate DH.
View Article and Find Full Text PDF