98%
921
2 minutes
20
Proteases contribute to a broad spectrum of cellular functions. Given a relatively limited amount of experimental data, developing accurate sequence-based predictors of substrate cleavage sites facilitates a better understanding of protease functions and substrate specificity. While many protease-specific predictors of substrate cleavage sites were developed, these efforts are outpaced by the growth of the protease substrate cleavage data. In particular, since data for 100+ protease types are available and this number continues to grow, it becomes impractical to publish predictors for new protease types, and instead it might be better to provide a computational platform that helps users to quickly and efficiently build predictors that address their specific needs. To this end, we conceptualized, developed, tested and released a versatile bioinformatics platform, ProsperousPlus, that empowers users, even those with no programming or little bioinformatics background, to build fast and accurate predictors of substrate cleavage sites. ProsperousPlus facilitates the use of the rapidly accumulating substrate cleavage data to train, empirically assess and deploy predictive models for user-selected substrate types. Benchmarking tests on test datasets show that our platform produces predictors that on average exceed the predictive performance of current state-of-the-art approaches. ProsperousPlus is available as a webserver and a stand-alone software package at http://prosperousplus.unimelb-biotools.cloud.edu.au/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbad372 | DOI Listing |
Nat Commun
September 2025
Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, Spain.
Bacteria often encounter physico-chemical stresses that disrupt division, leading to filamentation, where cells elongate without dividing. Although this adaptive response improves survival, it also exposes filaments to significant mechanical strain, raising questions about the mechanochemical feedback in bacterial systems. In this study, we investigate how mechanical strain modifies the geometry of bacterial filaments and influences the Min oscillatory system, a reaction-diffusion network central to division in Escherichia coli.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School
DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).
View Article and Find Full Text PDFProtein Expr Purif
September 2025
Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam. Electronic addr
The 3C-like protease (3CLpro) of SARS-CoV-2 is a crucial target for antiviral drugs due to its essential role in viral polyprotein processing. In this study, we designed and produced a modular fluorescent recombinant substrate (6×His-ECFP-AVLQSGFRK-EYFP), which was then immobilized on Ni-NTA magnetic beads (Ni-NTA-6×His-ECFP-AVLQSGFRK-EYFP) for the assay of 3CLpro activity. Upon cleavage at the specific AVLQ↓SG motif, the EYFP fragment was released into the supernatant and quantified via fluorescence measurement (Ex/Em = 480/528 nm).
View Article and Find Full Text PDFChem Biol Interact
September 2025
Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. Electronic address:
Prolyl endopeptidase (PREP) drives neurodegenerative diseases through dual mechanisms involving enzymatic activity and protein-protein interactions (PPIs), yet current inhibitors predominantly target single pathways. Prolyl endopeptidase (PREP) fuels neurodegeneration via enzymatic cleavage and pathological PPIs, yet current inhibitors usually target only one facet. In this study, leveraging our developed high-sensitivity and high-specificity near-infrared fluorescent probe Z-GP-ACM, we established and validated a screening platform for PREP inhibitors with mouse brain S9 instead of the human recombinant PREP.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China. Electronic address:
Electrochemical depolymerization of lignin to produce low molecular weight aromatic compounds is characterized by mild conditions and low carbon emissions. However, using non-metallic catalysts for this process faces challenges in terms of selectivity and activity. This study found that high-melting-point organic salts - tetra-n-butyl tetrafluoroborate (TBABF), can function simultaneously as a catalyst and oxidant at room temperature and in air, effectively catalyzing the CO bond cleavage in lignin.
View Article and Find Full Text PDF