Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate mastery of the creep characteristics of unsaturated saline soil is extremely important for the long-term stability and safe operation of all types of buildings. In this paper, the research object focused on the saline soil of the Zhangye area, Hexi corridor. The indoor triaxial CU creep test was carried out by means of graded loading to study the creep characteristics of saline soil under different salt content and loading stress. The Merchant and Burgers models were used to predict the creep behavior of the saline soils, and the predicted results were compared with the experimental values. The results showed that the triaxial creep curve of saline soil developed in stage III. Namely, transient creep stage, deceleration creep stage and steady-state creep stage. The creep deformation increases with the increase of salt content and loading stress. The stress-strain isochronous curve has non-linear growth, and the cluster of curves develops from dense to sparse after increasing to long-term strength (100∼150 kPa). The parameters of the Merchant and Burgers model vary with salt content and loading stress, and the creep curve predicted by the Burgers model is closer to the test value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593926PMC
http://dx.doi.org/10.1038/s41598-023-42548-6DOI Listing

Publication Analysis

Top Keywords

saline soil
20
creep characteristics
12
salt content
12
content loading
12
loading stress
12
creep stage
12
creep
10
study creep
8
hexi corridor
8
triaxial creep
8

Similar Publications

Solar-driven interfacial evaporation (SDIE) is an emerging eco-friendly and low-carbon technology and has been widely studied in the field of photothermal applications in recent years. With the attention and development of SDIE in innovation fields, new strategies, structures, and typical materials are gradually being developed and applied. Therefore, it is important to report on these latest developments.

View Article and Find Full Text PDF

Elevated salinity decreases soil multifunctionality by driving bacterial community structure and network complexity.

Sci Total Environ

September 2025

Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Soil salinization has emerged as a critical environmental challenge threatening the sustainable development of terrestrial ecosystems globally. While the detrimental effects of soil salinization on plant growth, soil nutrient dynamics, and microbial communities are well-documented, how salinity-driven shifts in microbial nutrient limitation and co-occurrence network complexity collectively regulate soil multifunctionality (SMF) remains poorly resolved, particularly in agroecosystems. We conducted a salinity gradient mesocosm experiment (1.

View Article and Find Full Text PDF

Genome-Wide Identification, Characterization, and Expression Analysis of Gene Family in .

Biology (Basel)

August 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture an

Nitrogen (N) is crucial for plant growth and stress resistance and is primarily absorbed and transported by nitrate transporters (NRT). , known for its strong salt-alkali stress resistance, and genes have rarely been reported. This study aims to identify and analyze the gene family to understand its composition, evolutionary patterns, and roles in salt stress responses.

View Article and Find Full Text PDF

Desert ecosystems pose extreme challenges to plant survival. This study explores the adaptive strategies of two xerophytic halophytes, and , in Xinjiang's Ebinur Lake wetland, focusing on their plant-soil-microbe (PSM) coupling systems across desert gradients. Results revealed significant interspecific and gradient-dependent differences in plant functional traits: showed high growth plasticity with a fast-growth strategy, while adopted a conservative strategy.

View Article and Find Full Text PDF

Saline-alkali soil poses a severe threat to the cultivation and yield of soybean, which is an important oilseed and staple crop. As a key metabolic intermediate, S-adenosyl-L-methionine (SAM) and its associated methyltransferases (SAMMTs) play crucial but poorly understood roles in plant stress responses. This study investigated the expression of SAM-depend methyltransferase (SAMMt) family in soybean.

View Article and Find Full Text PDF