Metal-Free Photocatalytic CO Reduction to CH and H O under Non-sacrificial Ambient Conditions.

Angew Chem Int Ed Engl

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photocatalytic CO reduction to CH requires photosensitizers and sacrificial agents to provide sufficient electrons and protons through metal-based photocatalysts, and the separation of CH from by-product O has poor applications. Herein, we successfully synthesize a metal-free photocatalyst of a novel electron-acceptor 4,5,9,10-pyrenetetrone (PT), to our best knowledge, this is the first time that metal-free catalyst achieves non-sacrificial photocatalytic CO to CH and easily separable H O . This photocatalyst offers CH product of 10.6 μmol ⋅ g  ⋅ h under non-sacrificial ambient conditions (room temperature, and only water), which is two orders of magnitude higher than that of the reported metal-free photocatalysts. Comprehensive in situ characterizations and calculations reveal a multi-step reaction mechanism, in which the long-lived oxygen-centered radical in the excited PT provides as a site for CO activation, resulting in a stabilized cyclic carbonate intermediate with a lower formation energy. This key intermediate is thermodynamically crucial for the subsequent reduction to CH product with the electronic selectivity of up to 90 %. The work provides fresh insights on the economic viability of photocatalytic CO reduction to easily separable CH in non-sacrificial and metal-free conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202313392DOI Listing

Publication Analysis

Top Keywords

photocatalytic reduction
12
non-sacrificial ambient
8
ambient conditions
8
easily separable
8
metal-free
5
metal-free photocatalytic
4
reduction
4
non-sacrificial
4
reduction non-sacrificial
4
conditions photocatalytic
4

Similar Publications

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF

Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.

View Article and Find Full Text PDF

Electron-Rich Macrocycle-Based Metal-Organic Frameworks for Efficient Photocatalytic CO Reduction.

J Am Chem Soc

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF