98%
921
2 minutes
20
Soil microorganisms play a crucial role in remediating contaminated soils in modern ecosystems. However, the potential of combining microorganisms with legumes to enhance the remediation of heavy metal-contaminated soils remains unexplored. To investigate this, we isolated and purified a highly efficient cadmium and lead-tolerant strain. Through soil-cultivated pot experiments with two leguminous plants ( L. and ), we studied the effects of applying this microbial agent on plant nutrient uptake of soil nutrients, heavy metal accumulation, and the dynamics of heavy metal content. Additionally, we examined the response characteristics of inter-root microbial and bacterial communities. The results demonstrated that microorganisms screened from heavy metal-contaminated soil environments exhibited strong survival and adaptability in heavy metal solutions. The use of the WZ14 strain-phytoremediation significantly increased the soil's ammonium nitrogen (AN) and organic carbon (OC) contents compared to monoculture. In addition, the lead (Pb) and cadmium (Cd) contents of the soil significantly decreased after combined remediation than those of the soil before potting. However, the remediation effects on Pb- and Cd-contaminated soils differed between the two legumes following the WZ14 inoculation. The combined restoration altered the composition of the plant inter-rhizosphere bacterial community, with the increase in the relative abundance of both Proteobacteria and Firmicutes. Overall, the combined remediation using the tolerant strain WZ14 with legumes proved advantageous. It effectively reduced the heavy metal content of the soil, minimized the risk of heavy metal migration, and enhanced heavy metal uptake, accumulation, and translocation in the legumes of and . Additionally, it improved the adaptability and resistance of both legumes, leading to an overall improvement in the soil's environmental quality. These studies can offer primary data and technical support for remediating and treating Cd and Pb in soils, as well as rehabilitating mining sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571051 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1272591 | DOI Listing |
Chemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFBrain Behav
September 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
Background: The susceptibility values of the basal ganglia reflect the health status of these nuclei. We aimed to explore the associations between various demographic characteristics, lifestyle factors, and biological factors that have the potential to contribute to magnetic susceptibility and investigate the comprehensive impact of these multiple factors on basal ganglia susceptibility values.
Methods: We included 25,980 participants from the UK Biobank.
Environ Monit Assess
September 2025
Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.
Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.
View Article and Find Full Text PDF