Induction of mitophagy via ROS-dependent pathway protects copper-induced hypothalamic nerve cell injury.

Food Chem Toxicol

College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China. Electronic address:

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Copper (Cu) is one of the essential trace elements in the body, but excessive amounts of Cu harm multiple organs and tissues such as liver, kidneys, testis, ovaries, and brain. However, the mechanism of hypothalamic neurotoxicity induced by Cu is still unknown. This study examined the relationship between reactive oxygen species (ROS) and mitophagy in mouse hypothalamus treated with high Cu. The results demonstrated that high levels of copper sulfate (CuSO) could cause histopathological and neuronal changes in the mouse hypothalamus, produce a large amount of ROS, induce mitophagy, and lead to an imbalance of mitochondrial fusion/fission. The main manifestations are an increase in the expression levels of LC3-II/LC3-I, p62, DRP1, and FIS1, and a decrease in the expression levels of MFN1 and MFN2. Cu can induce mitophagy also was confirmed by LC3 co-localization with TOMM20 (mitochondrial marker). Next, the effect of oxidative stress on CuSO-induced mitophagy was demonstrated. The results showed that ROS inhibitor N-acetylcysteine (NAC) diminished CuSO-induced mitophagy and reversed the disturbance of mitochondrial dynamics. Additionally, a study was carried out to evaluate the role of mitophagy in CuSO-induced hypothalamic injury. The inhibition of mitophagy using mitophagy inhibitor (Mdivi-1) decreased cell viability and promoted CuSO-inhibited mitochondrial fusion. The aforementioned results suggested that CuSO induced mitophagy via oxidative stress in N38 cells and mouse hypothalamus, and that the activation of mitophagy might generate protective mechanisms by alleviating Cu-induced mitochondrial dynamics disorder. This study provided a novel approach and theoretical basis for studying and preventing Cu neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2023.114097DOI Listing

Publication Analysis

Top Keywords

mouse hypothalamus
12
mitophagy
10
induce mitophagy
8
expression levels
8
oxidative stress
8
cuso-induced mitophagy
8
mitochondrial dynamics
8
mitochondrial
5
induction mitophagy
4
mitophagy ros-dependent
4

Similar Publications

Animal models of obesity.

Methods Cell Biol

September 2025

Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile. Electronic address:

Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, resulting from an imbalance between energy intake and expenditure. Mouse models have emerged as invaluable tools for elucidating the complex genetic, environmental, and physiological mechanisms driving to obesity. This chapter provides an overview of the methodologies employed to establish and study obesity in mice, highlighting their relevance to human disease.

View Article and Find Full Text PDF

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF

Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.

View Article and Find Full Text PDF

In most species, individuals must be able to identify threats, peers, and potential mates to survive. The distinction of kin from non-kin and novel conspecifics from familiars is essential to the successful categorization of these identities. Although oxytocin (OXT) signaling has been implicated in social recognition, little is known about the contributions of distinct OXT-producing cell groups to distinguishing conspecific type.

View Article and Find Full Text PDF

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF