Molecular dynamic modeling of EPS and inorganic/organic flocculants during sludge dual conditioning.

Sci Total Environ

Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environment

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extracellular polymeric substances (EPS) are the key components determining the dewatering behavior of wastewater sludge. However, current technical optimization of sludge conditioning for dewatering is limited by the poor understanding of the conditioner-EPS interactions at molecular levels. Herein, a combination of molecular dynamic (MD) simulations, dewaterability assessment and EPS characterization was used to reveal the sludge dewatering mechanisms using dual conditioning processes (prevalent inorganic (poly aluminum chloride (PAC)) and organic (poly dimethyl diallyl ammonium chloride (PDDA)). Results suggested that PAC and PDDA bridged the biopolymers mainly through electrostatic interactions, promoting the agglomeration of biopolymers and reducing their contact probability with water molecules. Water molecules were tightly bound to EPS mainly through hydrogen bonding with polar oxygen-containing functional groups. The adsorption of PAC and PDDA on hydrophilic components reduced the molecular polarity of biopolymers and altered the conformation of water molecules in the hydration shell, resulting in a decreased hydration capacity of EPS and the release of bound water, and sludge dewaterability was improved. PAC was found to be more effective than PDDA in disrupting the hydrogen bonding between water molecules and EPS, especially the protein β-sheet structure inside the molecular clusters with its high charge strength and diffusivity. Sludge bound water decreased by 73.16 % after PAC conditioning. In addition, PDDA exhibited superior agglomeration ability to biopolymers and promoted the electrostatic interaction between PAC and polar groups during dual conditioning. The strength and hydrophobicity of EPS molecular clusters were thus enhanced, and the conditioning efficiency was improved. This study offers molecular-level insights into the coagulation treatment process of sludge and provides theoretical references for process optimization and new conditioner development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167719DOI Listing

Publication Analysis

Top Keywords

water molecules
16
dual conditioning
12
molecular dynamic
8
pac pdda
8
hydrogen bonding
8
bound water
8
molecular clusters
8
eps
7
sludge
7
molecular
6

Similar Publications

l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.

View Article and Find Full Text PDF

The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.

View Article and Find Full Text PDF

Janus MXene Fiber Constructed via Flake Orientation Engineering.

Adv Mater

September 2025

Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

The orientation of MXene flakes has received increasing research attention as it plays a critical role in determining the performance of MXene-based assemblies. Engineering MXene flakes into horizontal or vertical orientations can offer distinct advantages such as higher electrical conductivity, higher mechanical strength, and more efficient ion/molecule transport across the flakes. However, the benefits of horizontal and vertical orientations are mutually exclusive, and both of them possess structural symmetry that restricts their ability for stimuli-responsive deformation.

View Article and Find Full Text PDF

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Metagenomic analysis reveals genetic coupling between TonB-dependent transporters and extracellular enzymes in coastal bacterial communities.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.

View Article and Find Full Text PDF