Investigation of the Vibrational Characteristics of 6-Isocyano-1-Methyl-1H-Indole: Utilizing the Isonitrile Group as an Infrared Probe.

Molecules

Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Indole derivatives have garnered considerable attention in the realm of biochemistry due to their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing a combination of FTIR, IR pump-probe spectroscopy, and theoretical calculations. Our findings demonstrate a strong dependence of the isonitrile stretching frequency of 6ICMI on the polarizability of protic solvents and the density of hydrogen-bond donor groups in the solvent when the isonitrile group is bonded to aromatic groups. Both experimental and theoretical analyses unveil a significant correlation between the isonitrile stretch vibration of 6ICMI and the solvent acceptor number of alcohols. Furthermore, the polarization-controlled infrared pump-probe conducted on 6ICMI in dimethyl sulfoxide provides additional support for the potential use of the isonitrile stretching mode of 6ICMI as an effective infrared probe for local environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574170PMC
http://dx.doi.org/10.3390/molecules28196939DOI Listing

Publication Analysis

Top Keywords

investigation vibrational
8
vibrational characteristics
8
isonitrile group
8
infrared probe
8
isonitrile stretching
8
isonitrile
5
6icmi
5
characteristics 6-isocyano-1-methyl-1h-indole
4
6-isocyano-1-methyl-1h-indole utilizing
4
utilizing isonitrile
4

Similar Publications

Growth of highly uniform 2-inch MoS wafers using liquid precursor spraying.

Nanoscale

September 2025

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.

With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.

View Article and Find Full Text PDF

Improved rotational characterization of the E3Σ1+(63S1) Rydberg state of CdAr van der Waals diatom: Excitation of single-isotopologue and J-level population distribution.

J Chem Phys

September 2025

Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.

An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.

View Article and Find Full Text PDF

Comparing abstraction and exchange channels in the H + HBr reaction: A stereodynamical control perspective.

J Chem Phys

September 2025

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.

This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.

View Article and Find Full Text PDF

Temperature-Resolved Crystallography Reveals Rigid-Body Dominance over Local Flexibility in B‑Factors.

ACS Omega

September 2025

Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

The crystallographic B-factor (Bf), also known as the Debye-Waller factor (DWF) or temperature factor, relates to the mean-square displacement of the atoms (X). X may be composed of individual contributions from lattice disorder (LT), static conformational heterogeneity (H) throughout the lattice, rigid body vibration (RB), local conformational vibration (V), and zero-point atomic fluctuation (A). The Bf has been widely employed as a surrogate measure of local protein flexibility, although such relation has not been confirmed.

View Article and Find Full Text PDF

The incorporation of transitional elements into silicon or germanium-based semiconductor clusters not only notably improves their structural stability but also endows them with unprecedented multifunctionalities. In this work, the structural, vibrational, and electronic properties for copper-doped silicon and germanium cation clusters Cu (X = Si or Ge, = 6-16) are systematically investigated. The ground-state structures are identified using the PBE0 and mPW2PLYP method combined with a global search technique.

View Article and Find Full Text PDF