Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One potential source of biopolymers is waste from the food industry, the use of which also provides a sustainable and eco-friendly solution to waste management. Thus, the aim of this work concerns the extraction of polysaccharide fractions from lemon, tomato and fennel waste. Characterizing the chemical-physical and thermodynamic properties of these polysaccharides is an essential step in evaluating their potential applications. Hence, the solubility of the extracted polysaccharides in different solvents, including water and organic solvents, was determined since it is an important parameter that determines their properties and applications. Also, acid-base titration was carried out, along with thermoanalytical tests through differential scanning calorimetry. Finally, the electrospinning of waste polysaccharides was investigated to explore the feasibility of obtaining polysaccharide-based membranes. Indeed, electrospun fibers are a promising structure/system via which it is possible to apply waste polysaccharides in packaging or well-being applications. Thanks to processing feasibility, it is possible to electrospin waste polysaccharides by combining them with different materials to obtain porous 3D membranes made of nanosized fibers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574608PMC
http://dx.doi.org/10.3390/molecules28196894DOI Listing

Publication Analysis

Top Keywords

waste polysaccharides
12
waste
8
polysaccharides
5
physico-chemical properties
4
properties valorization
4
valorization biopolymers
4
biopolymers derived
4
derived food
4
food processing
4
processing waste
4

Similar Publications

The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).

View Article and Find Full Text PDF

Subcritical water hydrolysis followed by pre-purification of cashew apple bagasse hydrolysates to produce fermentable sugar.

Food Res Int

November 2025

Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil. Electronic address:

The hydrolysis of biomass in fermentative processes often faces the difficulty of generating inhibitory products. Its reduction or removal is essential to enable the use of agro-industrial waste, such as cashew apple bagasse. Therefore, this study aimed to find an optimized condition for the hydrolysis of cashew apple bagasse by subcritical water and to introduce an in-line pre-purification process.

View Article and Find Full Text PDF

Valorization of metabolite-enriched carbohydrates from Theobroma biomass via ultrasound-assisted alkaline extraction.

Carbohydr Polym

November 2025

Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle Upon Tyne, United Kingdom; Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022, Valencia, Spain. Electronic address: joel.l.g.hernandez@north

Polysaccharides, widely used in food, pharmaceutical and industrial sectors, are abundant in Theobroma species pod husk waste (T. cacao, T. grandiflorum and T.

View Article and Find Full Text PDF

The inefficiency of traditional pesticides leads to significant resource waste, severe environmental pollution, and potential threats to human health. Pesticide microcapsules present a promising strategy for developing environmentally friendly, safe, and sustained-release formulations. In this study, we produced degradable starch nanocrystals (SNCs) via acid hydrolysis and employed octenyl succinic anhydride-modified SNCs (O-SNCs) to fabricate pesticide microcapsules.

View Article and Find Full Text PDF

is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.

View Article and Find Full Text PDF