98%
921
2 minutes
20
Current fundamental electrochemical research shows the potential of utilizing polymeric nanostructured materials as ion-to-electron transducers. In this paper, aniline was polymerized in the presence of TiO and CuO nanoparticles to yield a bimetallic/PANI nanocomposite. It was applied as a transducer in a carbon paste electrode for the potentiometric determination of vildagliptin in the presence of 18-crown-6-ether as a recognition element. The electrode's potentiometric performance was studied according to the IUPAC guidelines. It exhibited a wide linearity range of 1 × 10 M to 1 × 10 M, remarkable sensitivity (LOD of 4.5 × 10 M), and a fast response time of 10 s ± 1.3. The sensor did not show any potential drift due to the absence of the water layer between the carbon paste and the metallic conductor. This endowed the sensor with high stability and a long lifetime, as 137 days passed without the need to change the carbon paste surface. The electrode was utilized for the determination of the concentration of vildagliptin in bulk, pharmaceutical tablets, and human plasma, with average recovery ranging from 97.65% to 100.03%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575176 | PMC |
http://dx.doi.org/10.3390/polym15193991 | DOI Listing |
PNAS Nexus
September 2025
Department of Materials Science and Engineering, Westlake University, Hangzhou 310030, PR China.
Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.
View Article and Find Full Text PDFEnviron Res
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China. Electronic address: yubiao
In order to promote the development and application of low-carbon cement varieties and the recycling of industrial solid waste, this study used iron tailings and fluorogypsum to prepare iron-rich belite-sulfoaluminate cement (I-BCSA). The suitable conditions for the preparation of I-BCSA in this system were with an excessive addition of 6 wt% of SO in the raw meal, at a calcination temperature of 1250 °C for 1.5 h, and an added-gypsum content of 15 wt%.
View Article and Find Full Text PDFMikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
School of Stomatology, Qingdao University, Qingdao 266023, PR China; Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
White spot lesions (WSLs) are the most common complication of orthodontic treatment, compromising dental health and significantly affecting aesthetics. To address this clinical challenge, this study aims to develop a dual-functional therapeutic strategy that simultaneously promotes the remineralization of demineralized enamel and inhibits the activity of cariogenic bacteria, thereby achieving effective prevention and treatment of WSLs. A hollow double-shell structured CuO@N/C nanozyme (H-CuO@N/C) was synthesized using a one-step hydrothermal method.
View Article and Find Full Text PDF