Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Assessment of cold stability is essential for manufacture and commercialization of biotherapeutics. Storage stability is often estimated by measuring accelerated rates at elevated temperature and using mathematical models (as the Arrhenius equation). Although, this strategy often leads to an underestimation of protein aggregation during storage. In this work, we measured the aggregation rates of two antibodies in a broad temperature range (from 60 °C to -25 °C), using an isochoric cooling method to prevent freezing of the formulations below 0 °C. Both antibodies evidenced increasing aggregation rates when approaching extreme temperatures, because of hot and cold denaturation. This behavior was modelled using Arrhenius and Gibbs-Helmholtz equations, which enabled to deconvolute the contribution of unfolding from the protein association kinetics. This approach made possible to model the aggregation rates at refrigeration temperature (5 °C) in a relatively short timeframe (1-2 weeks) and using standard characterization techniques (SEC-HPLC and DLS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.10.009DOI Listing

Publication Analysis

Top Keywords

aggregation rates
12
aggregation
5
native non-native
4
non-native aggregation
4
aggregation pathways
4
pathways antibodies
4
antibodies anticipated
4
anticipated cold-accelerated
4
cold-accelerated studies
4
studies assessment
4

Similar Publications

Carbon particle aggregation for enhanced flow capacitive deionization.

Chem Commun (Camb)

September 2025

The Institute of Technological Sciences, MOE Key Laboratory of Hydraulic Machinery Transients, Wuhan University, Wuhan 430072, China.

Flow electrode capacitive deionization is governed by particle dynamics, which are strongly influenced by surface properties and flow conditions. This study shows that carbon particles with lower surface charge aggregate more rapidly into larger clusters, significantly enhancing desalination rates and achieving current efficiencies above 90%, offering guidance for advancing capacitive deionization systems.

View Article and Find Full Text PDF

Symmetry Breaking Assisted Fast Reverse Intersystem Crossing for Efficient TADF Materials.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.

View Article and Find Full Text PDF

The European Health Data Space aims to transform health data management across the EU, supporting both primary and secondary uses of health data while ensuring trust through General Data Protection Regulation compliance. As part of the HealthData@EU Pilot, this study investigates coronavirus disease 2019 (COVID-19) testing, vaccination, and hospitalization metrics across six European countries, with a focus on socioeconomic disparities and challenges in cross-border data access and standardization. This observational, retrospective cohort study used a federated analysis framework across Belgium, Croatia, Denmark, Finland, and France.

View Article and Find Full Text PDF

Background And Objective: The early detection of breast cancer plays a critical role in improving survival rates and facilitating precise medical interventions. Therefore, the automated identification of breast abnormalities becomes paramount, significantly enhancing the prospects of successful treatment outcomes. To address this imperative, our research leverages multiple modalities such as MRI, CT, and mammography to detect and screen for breast cancer.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF