Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The influence of the addition of Bi to the dilute ferromagnetic semiconductor (Ga,Mn)As on its electronic structure as well as on its magnetic and structural properties has been studied. Epitaxial (Ga,Mn)(Bi,As) layers of high structural perfection have been grown using low-temperature molecular-beam epitaxy. Post-growth annealing of the samples improves their structural and magnetic properties and increases the hole concentration in the layers. Hard X-ray angle-resolved photoemission spectroscopy reveals a strongly dispersing band in the Mn-doped layers, which crosses the Fermi energy and is caused by the high concentration of Mn-induced itinerant holes located in the valence band. An increased density of states near the Fermi level is attributed to additional localized Mn states. In addition to a decrease in the chemical potential with increasing Mn doping, we find significant changes in the valence band caused by the incorporation of a small atomic fraction of Bi atoms. The spin-orbit split-off band is shifted to higher binding energies, which is inconsistent with the impurity band model of the band structure in (Ga,Mn)As. Spectroscopic ellipsometry and modulation photoreflectance spectroscopy results confirm the valence band modifications in the investigated layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570295PMC
http://dx.doi.org/10.1038/s41598-023-43702-wDOI Listing

Publication Analysis

Top Keywords

valence band
12
electronic structure
8
structure gamnas
8
band
7
layers
5
influence doping
4
doping electronic
4
gamnas epitaxial
4
epitaxial layers
4
layers influence
4

Similar Publications

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography has revolutionized the high-volume manufacturing of nanoscale components. The use of EUV light leads to ionization-driven chemistry in the imaging materials of lithography, the photoresists. The complex interplay of ionization, generation of primary/secondary electrons, and the subsequent chemical mechanisms that lead to image formation in photoresists has been notoriously difficult to study.

View Article and Find Full Text PDF

Achieving high open-circuit voltage (V) continues to pose a significant challenge for kesterite CuZnSn(S,Se) (CZTSSe) solar cells, predominantly due to the pronounced charge carrier recombination occurring at heterointerface (HEI). To address this issue, an innovative non-metallic boron (B)-modification strategy is developed to optimize the HEI. The key advantages of this strategy are as follows: (i) Leveraging the strong bonding characteristic of B with three valence electrons, the dangling bonds on the absorber surface can be fully saturated, effectively passivating surface states without introducing new defects; (ii) Moreover, diffusion of B into the near-surface region of HEI during selenization process can create weak n-type B donor defects, which lowers the valence band maximum (VBM) of the absorber and mitigates Fermi level pinning.

View Article and Find Full Text PDF