Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection.

Methods: Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment) forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1.

Results: Our comprehensive functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent neutralizing activity without significant toxicity in a mouse model infected with a SARS-CoV-2 variant.

Conclusion: These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562541PMC
http://dx.doi.org/10.3389/fimmu.2023.1271508DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
16
sars-cov-2
9
dual-targeting strategy
8
sars-cov-2 rbd
8
nanomolar affinity
8
k203a bsab
8
rbd-specific mab
8
variants
5
novel bispecific
4
bispecific antibody
4

Similar Publications

Despite the therapeutic potential of the primary vaccine series, a lack of confidence in the COVID-19 booster vaccine poses a threat to public health and undermines its coverage at the national, regional, and global levels. This study aimed to understand COVID-19 booster vaccine confidence (CBVC) among Bangladeshi adults aged 18-49 and the potential predictors of CBVC. In line with STROBE guidelines, a face-to-face cross-sectional survey was conducted from June 15 to August 31, 2023 during the spread of the SARS-CoV-2 Omicron variant.

View Article and Find Full Text PDF

The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.

View Article and Find Full Text PDF

Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.

Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).

View Article and Find Full Text PDF

Unlabelled: The evolution of SARS-CoV-2 has resulted in antigenically distinct variants that challenge vaccine-induced immunity. The KP.2 monovalent mRNA vaccine was deployed in 2024 to address immune escape by emerging SARS-CoV-2 subvariants.

View Article and Find Full Text PDF

Extensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.

View Article and Find Full Text PDF