Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Breast cancer (BC) is the most common malignancy with very high incidence and relatively high mortality in women. The PIK3CA gene plays a pivotal role in the pathogenicity of breast cancer. Despite this, the mutational status of all exons except exons 9 and 20 still remains unknown.

Methods: This study uses the whole exome sequencing (WES) based approach to identify somatic PIK3CA mutations in Indian BC cohorts. The resultant hotspot mutations were validated by droplet digital PCR (ddPCR). Further, molecular dynamics (MD) simulation was applied to elucidate the conformational and functional effects of hotspot position on PIK3CA protein.

Results: In our cohort, PIK3CA showed a 44.4% somatic mutation rate and was among the top mutated genes. The mutations of PIK3CA were confined in Exons 5, 9, 11, 18, and 20, whereas the maximum number of mutations lies within exons 9 and 20. A total of 9 variants were found in our study, of which 2 were novel mutations observed on exons 9 (p.H554L) and 11 (p.S629P). However, H1047R was the hotspot mutation at exon 20 (20%). In tumor tissues, there was a considerable difference between copy number of wild-type and H1047R mutant was detected by ddPCR. Significant structural and conformational changes were observed during MD simulation, induced due to point mutation at H1047R/L position.

Conclusions: The current study provides a comprehensive view of novel as well as reported single nucleotide variants (SNVs) in PIK3CA gene associated with Indian breast cancer cases. The mutation status of H1047R/L could serve as a prognostic value in terms of selecting targeted therapy in BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568783PMC
http://dx.doi.org/10.1186/s12935-023-03075-6DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
exome sequencing
8
hotspot mutation
8
droplet digital
8
digital pcr
8
pik3ca gene
8
pik3ca
7
mutation
5
exons
5
mutations
5

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF