98%
921
2 minutes
20
The microecology of endophytic fungi in special habitats, such as the interior of different tissues from a medicinal plant, and its effects on the formation of metabolites with different biological activities are of great importance. However, the factors affecting fungal community formation are unclear. This study is the first to utilize "mini-community" remodeling to understand the above phenomena. First, high-throughput sequencing technology was applied to explore the community composition and diversity of endophytic fungi in the above-ground tissues (Ea) and below-ground tissues (Eb) of Ephedra sinica. Second, fungi were obtained through culture-dependent technology and used for "mini-community" remodeling in vitro. Then, the effects of environmental factors, partner fungi, and plant tissue fluid (internal environment) on endophytic fungal community formation were discussed. Results showed that environmental factors played a decisive role in the selection of endophytic fungi, that is, in Ea and Eb, 93.8% and 25.3% of endophytic fungi were halophilic, respectively, and 10.6% and 60.2% fungi were sensitive to high temperature (33 °C), respectively. Meanwhile, pH had little effect on fungal communities. The internal environment of the plant host further promoted the formation of endophytic fungal communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2023.07.006 | DOI Listing |
Microb Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
Appl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDF