Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stroke enhances proliferation of neural precursor cells within the subventricular zone (SVZ) and induces ectopic migration of newborn cells towards the site of injury. Here, we characterize the identity of cells arising from the SVZ after stroke and uncover a mechanism through which they facilitate neural repair and functional recovery. With genetic lineage tracing, we show that SVZ-derived cells that migrate towards cortical photothrombotic stroke in mice are predominantly undifferentiated precursors. We find that ablation of neural precursor cells or conditional knockout of VEGF impairs neuronal and vascular reparative responses and worsens recovery. Replacement of VEGF is sufficient to induce neural repair and recovery. We also provide evidence that CXCL12 from peri-infarct vasculature signals to CXCR4-expressing cells arising from the SVZ to direct their ectopic migration. These results support a model in which vasculature surrounding the site of injury attracts cells from the SVZ, and these cells subsequently provide trophic support that drives neural repair and recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564905PMC
http://dx.doi.org/10.1038/s41467-023-42138-0DOI Listing

Publication Analysis

Top Keywords

neural repair
16
subventricular zone
8
trophic support
8
neural precursor
8
cells
8
precursor cells
8
ectopic migration
8
site injury
8
cells arising
8
arising svz
8

Similar Publications

Background: Gait impairment in Parkinson's disease (PD) occurs early and pharmaceutical interventions do not fully restore this function. Visual cueing has been shown to improve gait and alleviate freezing of gait (FOG) in PD. Technological development of digital laser shoe visual cues now allows for visual cues to be used continuously when walking.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Unveiling the Riddoch phenomenon: a regression analysis of stroke-induced homonymous hemianopia.

Front Neurol

August 2025

Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.

View Article and Find Full Text PDF

Facial nerve pathology: emerging strategies for regeneration and functional restoration.

J Mater Chem B

September 2025

Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Joseph D. & Millie E. Williams Science Hall, 525 S 42nd St, Room No 3.0.010, Omaha, NE 68105-6040, USA.

Facial nerve injuries cause significant functional impairments, affect facial expressions, speech, and overall quality of life. This article explores advances in facial nerve regeneration, encompassing both conventional and emerging therapeutic strategies. The regenerative process involves Wallerian degeneration, axonal regrowth, and target muscle reinnervation, where the distal axon degrades and the proximal axon initiates sprouting to restore connectivity.

View Article and Find Full Text PDF