Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In Canada, more than 2 million people live with osteoporosis, a disease that increases the risk for fractures, which result in excess mortality and morbidity, decreased quality of life and loss of autonomy. This guideline update is intended to assist Canadian health care professionals in the delivery of care to optimize skeletal health and prevent fractures in postmenopausal females and in males aged 50 years and older.

Methods: This guideline is an update of the 2010 Osteoporosis Canada clinical practice guideline on the diagnosis and management of osteoporosis in Canada. We followed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework and quality assurance as per Appraisal of Guidelines for Research and Evaluation (AGREE II) quality and reporting standards. Primary care physicians and patient partners were represented at all levels of the guideline committees and groups, and participated throughout the entire process to ensure relevance to target users. The process for managing competing interests was developed before and continued throughout the guideline development, informed by the Guideline International Network principles. We considered benefits and harms, patient values and preferences, resources, equity, acceptability and feasibility when developing recommendations; the strength of each recommendation was assigned according to the GRADE framework.

Recommendations: The 25 recommendations and 10 good practice statements are grouped under the sections of exercise, nutrition, fracture risk assessment and treatment initiation, pharmacologic interventions, duration and sequence of therapy, and monitoring. The management of osteoporosis should be guided by the patient's risk of fracture, based on clinical assessment and using a validated fracture risk assessment tool. Exercise, nutrition and pharmacotherapy are key elements of the management strategy for fracture prevention and should be individualized.

Interpretation: The aim of this guideline is to empower health care professionals and patients to have meaningful discussions on the importance of skeletal health and fracture risk throughout older adulthood. Identification and appropriate management of skeletal fragility can reduce fractures, and preserve mobility, autonomy and quality of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610956PMC
http://dx.doi.org/10.1503/cmaj.221647DOI Listing

Publication Analysis

Top Keywords

management osteoporosis
12
fracture risk
12
clinical practice
8
guideline
8
practice guideline
8
fracture prevention
8
quality life
8
guideline update
8
health care
8
care professionals
8

Similar Publications

Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.

View Article and Find Full Text PDF

Phytochemicals in Bone Therapy: Exploring Natural Alternatives for Bone Health.

Int J Nanomedicine

September 2025

Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.

Bone diseases such as osteoporosis and osteoarthritis are increasingly prevalent, particularly in aging populations. While conventional treatments, including synthetic drugs and mineral supplements, are effective yet often associated with side effects and long-term economic burdens. Active compounds derived from nature, "Phytochemicals" have garnered attention due to their potential to provide safer and more sustainable alternative therapeutic options.

View Article and Find Full Text PDF

Osteoporosis is a common condition, and treatment can reduce the risk of fracture and extend healthy life expectancy, but most cases go undiagnosed and untreated. Dual-energy X-ray absorptiometry (DXA), the gold standard for diagnosing osteoporosis, is costly, time-consuming, and labor-intensive, with limited availability in low-resource settings and small clinics, so it is not suitable for screening for potential osteoporosis. To address this problem, in recent years, some studies have attempted to screen for osteoporosis by estimating DXA bone mineral density (BMD) from chest radiographs (CR), which are frequently used in daily clinical practice, by applying deep learning technology.

View Article and Find Full Text PDF

Osteoporosis is a prevalent metabolic bone disorder with complex molecular underpinnings. Emerging evidence implicates endoplasmic reticulum stress (ERS) in its pathogenesis; however, systematic exploration of ERS-related genes (ERSRGs) remains limited. This study aimed to identify ERS-related differentially expressed genes (ERSRDEGs) in osteoporosis, construct a diagnostic model, and elucidate associated molecular mechanisms.

View Article and Find Full Text PDF

BACKGROUND Periprosthetic tibial fractures following total knee arthroplasty (TKA) are increasingly encountered in very elderly patients, where multiple comorbidities and osteoporosis compromise early mobilization and elevate the risk of complications. Maintaining pre-injury activities of daily living (ADL) while ensuring safe surgical management is challenging. We present a case of a 95-year-old woman with a periprosthetic tibial shaft fracture managed with open reduction, additional plate fixation, and Ilizarov external fixation, enabling immediate postoperative weight-bearing.

View Article and Find Full Text PDF