98%
921
2 minutes
20
Objective: To explore whether reduced-dose (RD) gemstone spectral imaging (GSI) and deep learning image reconstruction (DLIR) of 40 keV virtual monoenergetic image (VMI) enhanced the early detection and diagnosis of colorectal cancer liver metastases (CRLM).
Methods: Thirty-five participants with pathologically confirmed colorectal cancer were prospectively enrolled from March to August 2022 after routine care abdominal computed tomography (CT). GSI mode was used for contrast-enhanced CT, and two portal venous phase CT images were obtained [standard-dose (SD) CT dose index (CTDI) = 15.51 mGy, RD CTDI = 7.95 mGy]. The 40 keV-VMI were reconstructed via filtered back projection (FBP) and iterative reconstruction (ASIR-V 60 %, AV60) of both SD and RD images. RD medium-strength deep learning image reconstruction (DLIR-M) and RD high-strength deep learning image reconstruction (DLIR-H) were used to reconstruct the 40 keV-VMI. The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the liver and the lesions were objectively evaluated. The overall image quality, lesion conspicuity, and diagnostic confidence were subjectively evaluated, to compare the differences in evaluation results among the different images.
Results: All 35 participants (mean age: 59.51 ± 11.01 years; 14 females) underwent SD and RD GSI portal venous-phase CT scans. The dose-length product of the RD GSI scan was reduced by 49-53 % lower than that of the SD GSI scan (420.22 ± 31.95) vs (817.58 ± 60.56). A total of 219 lesions were identified, including 55 benign lesions and 164 metastases, with an average size of 7.37 ± 4.14 mm. SD-FBP detected 207 lesions, SD-AV60 detected 201 lesions, and DLIR-M and DLIR-H detected 199 and 190 lesions, respectively. For lesions ≤ 5 mm, there was no statistical difference between SD-FBP vs DLIR-M (χ = 1.00, P = 0.32) and SD-AV60 vs DLIR-M (χ = 0.33, P = 0.56) in the detection rate. The CNR, SNR, and noise of DLIR-M and DLIR-H 40 keV-VMI images were better than those of SD-FBP images (P < 0.01) but did not differ significantly from those of SD-AV60 images (P > 0.05). When the lesions ≤ 5 mm, there were statistical differences in the overall diagnostic sensitivity of lesions compared with SD-FBP, SD-AV60, DLIR-M and DLIR-H (P<0.01). There were no statistical differences in the sensitivity of lesions diagnosis between SD-FBP, SD-AV60 and DLIR-M (both P>0.05). However, the DLIR-M subjective image quality and lesion diagnostic confidence were higher for SD-FBP (both P < 0.01).
Conclusion: Reduced dose DLIR-M of 40 keV-VMI can be used for routine follow-up care of colorectal cancer patients, to optimize evaluations and ensure CT image quality. Meanwhile, the detection rate and diagnostic sensitivity and specificity of small lesions, early liver metastases is not obviously reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2023.111128 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDF