98%
921
2 minutes
20
Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1 leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1 monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1 monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states. Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068395 | PMC |
http://dx.doi.org/10.1152/ajplung.00023.2023 | DOI Listing |
Int Immunopharmacol
September 2025
Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. Electronic address:
Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is associated with impaired neutrophil migration to the infectious focus owing to G protein-coupled receptor kinase (GRK2)-dependent CXCR2 internalization. In the present study, we investigated whether paroxetine, an antidepressant that belongs to the selective serotonin reuptake inhibitor (SSRI) class of drugs and that is also identified as a GRK2 inhibitor, can improve neutrophil recruitment in the cecal ligation and puncture (CLP)-induced sepsis model. Moderate (mCLP) and severe (sCLP) polymicrobial peritonitis were induced in C57BL/6 mice.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas. São Paulo, Brazil. 13083-878.
Intravascular hemolysis (IVH), a pathological process associated with various conditions, triggers inflammatory responses, yet the key molecular drivers of these responses are poorly defined, particularly within the vasculature. To explore the role of NLRP3 inflammasome- and caspase-1-dependent pathways in IVH-induced vascular dysfunction, we used models of acute and chronic IVH, alongside heme stimulation of endothelial cells, thereby isolating this disease mechanism from its etiological causes. IVH induced rapid inflammatory responses in C57BL/6J mice, including IL-1β release within 15 minutes, and NLRP3-dependent caspase-1 activation in circulating leukocytes.
View Article and Find Full Text PDFSci Immunol
September 2025
Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
A new orally bioavailable HO-1 inhibitor enhances tumor clearance after chemotherapy in mice by enhancing the recruitment of CD8 T cells.
View Article and Find Full Text PDFThe leukocyte NADPH oxidase 2 (NOX2) is an important regulator of inflammatory responses, independent of its antimicrobial activity. Inactivating mutations in NOX2 cause chronic granulomatous disease (CGD), a severe immunodeficiency associated with recurrent infections and dysregulated neutrophilic inflammation. Recurrent oral ulcers, stomatitis, gingivitis, and other inflammatory issues affecting the oral mucosa have been observed in patients with CGD; however, the underlying mechanisms are not known.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Acute pancreatitis (AP) is a gastrointestinal disease characterized by inflammation of the pancreas and is associated with high rates of morbidity and mortality. The pathogenesis of AP involves a complex interplay of cellular and molecular mechanisms, including oxidative stress, damage-associated molecular patterns (DAMPs), and the infiltration of various immune cells. This review aims to provide a comprehensive overview of the molecular mechanisms underlying AP, the role of different immune cells in its progression and potential therapeutic perspectives.
View Article and Find Full Text PDF