98%
921
2 minutes
20
Coastal ecosystems are facing heightened risks due to human-induced climate change, including rising water levels and intensified storm events. Accurate bathymetry data is crucial for assessing the impacts of these threats. Traditional data collection methods can be cost-prohibitive. This study investigates the feasibility of using freely accessible Landsat and Sentinel satellite imagery to estimate bathymetry and its correlation with hydrographic chart soundings in Port Klang, Malaysia. Through analysis of the blue and green spectral bands from the Landsat 8 and Sentinel 2 datasets, a bathymetry map of Port Klang's seabed is generated. The precision of this derived bathymetry is evaluated using statistical metrics like Root Mean Square Error (RMSE) and the coefficient of determination. The results reveal a strong statistical connection (R = 0.9411) and correlation (R = 0.7958) between bathymetry data derived from hydrographic chart soundings and satellite imagery. This research not only advances our understanding of employing Landsat imagery for bathymetry assessment but also underscores the significance of such assessments in the context of climate change's impact on coastal ecosystems. The primary goal of this research is to contribute to the comprehension of Landsat imagery's utility in bathymetry evaluation, with the potential to enhance safety protocols in seaport terminals and provide valuable insights for decision-making concerning the management of coastal ecosystems amidst climate-related challenges. The findings of this research have practical implications for a wide range of stakeholders involved in coastal management, environmental protection, climate adaptation and disaster preparedness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117314 | DOI Listing |
Microbiol Res
September 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.
View Article and Find Full Text PDFNat Commun
September 2025
Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.
Due to anthropogenic pressure some species have declined whereas others have increased within their native ranges. Simultaneously, many species introduced by humans have established self-sustaining populations elsewhere (i.e.
View Article and Find Full Text PDFCurr Biol
September 2025
Oosterland, Netherlands.
Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.
View Article and Find Full Text PDFMar Environ Res
September 2025
Department of Ocean Integrated Science, Chonnam National University, 59626, Yeosu, Republic of Korea. Electronic address:
Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.
View Article and Find Full Text PDFTree Physiol
September 2025
Department of Plant Sciences, University of California, Davis, CA, USA.
Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400-2400 nm) and canopy (420-850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA.
View Article and Find Full Text PDF