Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543316PMC
http://dx.doi.org/10.21203/rs.3.rs-3342413/v2DOI Listing

Publication Analysis

Top Keywords

3xtg mice
16
protein restriction
8
development progression
8
progression alzheimer's
8
alzheimer's disease
8
dietary protein
8
metabolic health
8
mouse model
8
benefits 3xtg
8
3xtg females
8

Similar Publications

Alzheimer's disease prevention by flavonols and their analogs.

J Prev Alzheimers Dis

September 2025

Omphalos Bioscience LLC, Sandia Park NM 87047, USA.

Four studies now document reduced incidence of Alzheimer's disease (AD) or dementia diagnoses in aging individuals who report higher dietary intake of flavonols (or their glycosides) years prior to diagnosis vs those with lower intake. These effects are large, almost 50 %, for individuals at higher genetic risk for AD, providing a robust gene x environment interaction. They display a specific structure-activity relationship.

View Article and Find Full Text PDF

Splenomegaly, Spleen Amyloidosis and Neutrophil Infiltration are Present in 3xTg-AD, but not Tg-SwDI Mice.

Neuromolecular Med

September 2025

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Cuidad Universitaria, Apartado Postal 70228, CP 04510, CDMX, Mexico.

It is now widely accepted that the development of neurodegenerative diseases depends on and affects many pathological processes, both in the brain and the periphery. Inflammatory, cardiovascular, metabolic, cerebrovascular, autoimmune, and other environmental factors have been extensively studied and shown to contribute notably to the onset, pathogenesis, and clinical outcome of Alzheimer´s disease (AD), Parkinson´s disease (PD), cerebral amyloid angiopathy (CAA), multiple sclerosis, and other neurological disorders. Likewise, AD-induced changes in other tissues outside the central nervous system, such as abnormalities observed in the liver, spleen, or lungs, have been documented and extensively studied, leading to a better understanding of brain-periphery crosstalk in neurodegenerative diseases and the development of novel diagnostic and therapeutic approaches.

View Article and Find Full Text PDF

Artery structural properties and Alzheimer's disease (AD) pathology are individually associated with impaired cerebrovascular function; however, the interaction of these factors is unclear. Furthermore, while elastin haploinsufficient (Eln+/-) mice are known to have impaired cerebrovascular function, sex differences for this effect have not been previously studied. To answer these questions, we crossed middle-aged and old Eln+/-mice with 3xTg-AD mice.

View Article and Find Full Text PDF

As a neurodegenerative disease characterized by progressive cognitive decline, the pathogenesis of Alzheimer's disease (AD) is still poorly understood, and there is no effective cure currently available. Traditional Chinese medicine (TCM) prescription Yangming-Kaixin-Yizhi formula (YKY) has been clinically applied for the treatment of memory loss related disorders for more than 300 years with remarkable efficacy, but its pharmacological mechanism remains unclear. This study aimed to investigate the therapeutic effects of YKY on AD and its molecular mechanisms.

View Article and Find Full Text PDF

Asparagine endopeptidase (AEP) plays a critical role in Alzheimer's disease (AD) by cleaving amyloid precursor protein (APP) at N585 and tau protein at N368. Genetic deletion or pharmacological inhibition of AEP using compound 11a ameliorates AD pathology in murine models. To improve the therapeutic potential of 11a, we synthesized structural analogs and developed a zein-based nanoparticle delivery system to enhance pharmacokinetics.

View Article and Find Full Text PDF