Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of , which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by . Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target. Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068393PMC
http://dx.doi.org/10.1152/ajplung.00177.2023DOI Listing

Publication Analysis

Top Keywords

kynurenine pathway
24
pathway metabolism
12
pulmonary arterial
12
arterial hypertension
12
pah
12
pah development
12
kynurenine
9
hypertension pah
8
systemic sclerosis
8
ssc-pah diagnosis
8

Similar Publications

Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .

View Article and Find Full Text PDF

Sex-Specific Vulnerabilities in the Kynurenine Pathway: Toward Precision Biomarkers for Adolescent Depression.

Biol Psychiatry

October 2025

Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, The University of Texas at Austin, Austin, Texas. Electronic address:

View Article and Find Full Text PDF

Preclinical models are essential for understanding the pathophysiology of intermittent explosive disorder (IED) in rodents. However, current models fail to fully uncover the molecular mechanisms behind restraint stress-induced aggression. We introduced a restrainer combined with a biting rod to measure IED-associated symptoms in stressed rats.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common chronic degenerative joint disease characterized by complex immune and metabolic abnormalities. However, the role of amino acid metabolism in OA has remained insufficiently elucidated. In this study, we systematically explored the potential role of tryptophan metabolism abnormalities in the pathogenesis of OA.

View Article and Find Full Text PDF

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained fatigue, post-exertional malaise (PEM), and cognitive dysfunction. ME/CFS patients often report a prodrome consistent with infection. We present a multi-omics analysis based on plasma metabolomic and proteomic profiling, and immune responses to microbial stimulation, before and after exercise.

View Article and Find Full Text PDF