Metal Recovery from Natural Saline Brines with an Electrochemical Ion Pumping Method Using Hexacyanoferrate Materials as Electrodes.

Nanomaterials (Basel)

Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources-such as seawater, geothermal water, well brine, or reverse osmosis brine-using electrochemical systems, which is considered a non-evaporative process. This technology is potentially used for metals like Li, Cu, Ca, Mg, Na, K, Sr, and others that are mostly obtained from natural brine sources through a combination of pumping, solar evaporation, and solvent extraction steps. As the future demand for metals for the electronic industry increases, new forms of marine mining processing alternatives are being implemented. Unfortunately, both land and marine mining, such as off-shore and deep sea types, have great potential for severe environmental disruption. In this context, a green alternative is the mixing entropy battery, which is a promising technique whereby the ions are captured from a saline natural source and released into a recovery solution with low ionic force using intercalation materials such as Prussian Blue Analogue (PBA) to store cations inside its crystal structure. This new technique, called "electrochemical ion pumping", has been proposed for water desalination, lithium concentration, and blue energy recovery using the difference in salt concentration. The raw material for this technology is a saline solution containing ions of interest, such as seawater, natural brines, or industrial waste. In particular, six main ions of interest-Na, K, Mg, Ca, Cl, and SO-are found in seawater, and they constitute 99.5% of the world's total dissolved salts. This manuscript provides relevant information about this new non-evaporative process for recovering metals from aqueous salty solutions using hexacianometals such as CuHCF, NiHCF, and CoHCF as electrodes, among others, for selective ion removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537048PMC
http://dx.doi.org/10.3390/nano13182557DOI Listing

Publication Analysis

Top Keywords

electrochemical ion
8
ion pumping
8
recovering metals
8
metals natural
8
non-evaporative process
8
marine mining
8
natural
5
metal recovery
4
recovery natural
4
natural saline
4

Similar Publications

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

The synthesis of α-ketoamides through oxidative ring opening of 1-acetylindoline-3-one under electrochemical conditions is reported. In an undivided cell, the reaction proceeds via the formation of an iminium ion intermediate, nucleophilic attack by a hydroxide ion, and subsequent ring opening through pre-existing C-N bond cleavage. The reaction in the presence of HO confirms that the amidic oxygen originated from the moisture present in the medium.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.

View Article and Find Full Text PDF

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF