Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and ) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527161PMC
http://dx.doi.org/10.3390/brainsci13091347DOI Listing

Publication Analysis

Top Keywords

potassium calcium
12
calcium currents
8
slow potassium
8
ion channels
8
play role
8
bistable dynamics
8
burst synchronization
8
firing
5
roles potassium
4
currents bistable
4

Similar Publications

Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.

View Article and Find Full Text PDF

Associations of dietary mineral intakes with the risk of six common mental disorders: A prospective cohort study.

J Affect Disord

September 2025

NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, 710061, China. Electronic ad

Background: Evidence on the relationship between dietary minerals and mental disorders remains limited and inconsistent. This study assessed the associations between twelve essential minerals and six major mental disorders.

Methods: We included 199,877 participants from the UK biobank without implausible energy intake, missing covariates, or baseline mental disorders.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF

Hyperkalemia is a common and serious complication in dialysis patients, with increased incidence and severity over time. Newer potassium binders, patiromer and sodium zirconium cyclosilicate (SZC), offer improved tolerability compared to older agents. This meta-analysis aims to evaluate the efficacy and safety of these newer binders in dialysis patients.

View Article and Find Full Text PDF