An interesting feature in dissipative nonlinear systems is the emergence of characteristic domains in parameter space that exhibit periodic temporal evolution, known as shrimp-shaped domains. We investigate the parameter space of the dissipative asymmetric kicked rotor map and show that, in the regime of strong dissipation, the shrimp-shaped domains repeat themselves as the nonlinearity parameter increases while maintaining the same period. We analyze the dependence of the length of each periodic domain with the nonlinearity parameter, revealing that it follows a power law with the same exponent regardless of the dissipation parameter.
View Article and Find Full Text PDFWe investigate some statistical properties of escaping particles in a billiard system whose boundary is described by two control parameters with a hole on its boundary. Initially, we analyze the survival probability for different hole positions and sizes. We notice that the survival probability follows an exponential decay with a characteristic power-law tail when the hole is positioned partially or entirely over large stability islands in phase space.
View Article and Find Full Text PDFWe study three different strategies of vaccination in an SEIRS (Susceptible-Exposed-Infected-Recovered-Susceptible) seasonal forced model, which are (i) continuous vaccination; (ii) periodic short-time localized vaccination, and (iii) periodic pulsed width campaign. Considering the first strategy, we obtain an expression for the basic reproduction number and infer a minimum vaccination rate necessary to ensure the stability of the disease-free equilibrium (DFE) solution. In the second strategy, short duration pulses are added to a constant baseline vaccination rate.
View Article and Find Full Text PDFFor tokamaks with uniform magnetic shear, Martin and Taylor have proposed a symplectic map which has been used to describe the magnetic field lines at the plasma edge perturbed by an ergodic magnetic limiter. We propose an analytical magnetic field line map, based on the Martin-Taylor map, for a tokamak with arbitrary safety factor profile. With the inclusion of a nonmonotonic profile, we obtain a nontwist map which presents the characteristic properties of degenerate systems, such as the twin islands scenario, shearless curve, and separatrix reconnection.
View Article and Find Full Text PDFIn this work, we study the dynamics of a susceptible-exposed-infectious-recovered-susceptible epidemic model with a periodic time-dependent transmission rate. Emphasizing the influence of the seasonality frequency on the system dynamics, we analyze the largest Lyapunov exponent along parameter planes finding large chaotic regions. Furthermore, in some ranges, there are shrimp-like periodic structures.
View Article and Find Full Text PDFHealthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro).
View Article and Find Full Text PDFHealthy brains display a wide range of firing patterns, from synchronized oscillations during slowwave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking cells (RS) with frequency adaptation and do not exhibit bursts in current-clamp experiments ( ).
View Article and Find Full Text PDFThe stickiness effect is a fundamental feature of quasi-integrable Hamiltonian systems. We propose the use of an entropy-based measure of the recurrence plots (RPs), namely, the entropy of the distribution of the recurrence times (estimated from the RP), to characterize the dynamics of a typical quasi-integrable Hamiltonian system with coexisting regular and chaotic regions. We show that the recurrence time entropy (RTE) is positively correlated to the largest Lyapunov exponent, with a high correlation coefficient.
View Article and Find Full Text PDFCognitive tasks in the human brain are performed by various cortical areas located in the cerebral cortex. The cerebral cortex is separated into different areas in the right and left hemispheres. We consider one human cerebral cortex according to a network composed of coupled subnetworks with small-world properties.
View Article and Find Full Text PDFWe propose a one-dimensional dynamical system, the sine-circle nontwist map, that can be considered a local approximation of the standard nontwist map and an extension of the paradigmatic sine-circle map. The map depends on three parameters, exhibiting a simple mathematical form but with a rich dynamical behavior. We identify periodic, quasiperiodic, and chaotic solutions for different parameter sets with the Lyapunov exponent and Slater's theorem.
View Article and Find Full Text PDFThe routes to chaos play an important role in predictions about the transitions from regular to irregular behavior in nonlinear dynamical systems, such as electrical oscillators, chemical reactions, biomedical rhythms, and nonlinear wave coupling. Of special interest are dissipative systems obtained by adding a dissipation term in a given Hamiltonian system. If the latter satisfies the so-called twist property, the corresponding dissipative version can be called a "dissipative twist system.
View Article and Find Full Text PDFChaos Solitons Fractals
January 2021
During an infectious disease outbreak, mathematical models and computational simulations are essential tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools, we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate the restrictions.
View Article and Find Full Text PDFFront Physiol
September 2020
In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization.
View Article and Find Full Text PDFNon-monotonic area-preserving maps violate the twist condition locally in phase space, giving rise to shearless invariant barriers surrounded by twin island chains in these regions of phase space. For the extended standard nontwist map, with two resonant perturbations with distinct wave numbers, we investigate the presence of such barriers and their associated island chains and compare our results with those that have been reported for the standard nontwist map with only one perturbation. Furthermore, we determine in the control parameter space the existence of the shearless barrier and the influence of the additional wave number on this condition.
View Article and Find Full Text PDFIn Hamiltonian systems, depending on the control parameter, orbits can stay for very long times around islands, the so-called stickiness effect caused by a temporary trapping mechanism. Different methods have been used to identify sticky orbits, such as recurrence analysis, recurrence time statistics, and finite-time Lyapunov exponent. However, these methods require a large number of map iterations and to know the island positions in the phase space.
View Article and Find Full Text PDFChimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses.
View Article and Find Full Text PDFFront Comput Neurosci
April 2019
Excessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model.
View Article and Find Full Text PDFWe study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2015
In this paper we study how hyperbolic and nonhyperbolic regions in the neighborhood of a resonant island perform an important role allowing or forbidding stickiness phenomenon around islands in conservative systems. The vicinity of the island is composed of nonhyperbolic areas that almost prevent the trajectory to visit the island edge. For some specific parameters tiny channels are embedded in the nonhyperbolic area that are associated to hyperbolic fixed points localized in the neighborhood of the islands.
View Article and Find Full Text PDF