Electrical-mechanical dynamical coupling between electrocardiographic and photoplethysmographic signals during cardiopulmonary resuscitation.

Comput Methods Programs Biomed

Institute of Intelligent Medical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China. Electronic address:

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Cardiac arrest (CA) remains a significant cause of death and disability. High-quality cardiopulmonary resuscitation (CPR) can improve the survival rate of CA. A challenging issue is to find physiological indicators for screening and evaluating the cardiovascular function associated with CPR. This study aimed to investigate the electrical-mechanical dynamic coupling between electrocardiographic (ECG) and photoplethysmographic (PPG) signals for indicating cardiovascular function in the progress of CPR.

Method: The ECG and PPG signals were simultaneously collected from a porcine CA model (n = 10) induced by ventricular fibrillation, and were further divided into four periods: Baseline, CA, CPR, and recovery of spontaneous circulation (ROSC). Recurrence quantitative analysis (RQA) was applied to examine the nonlinear dynamics of the ECG and PPG signals individually, and cross recurrence quantitative analysis (CRQA) was used to examine the ECG-PPG dynamical coupling.

Results: The CA influenced the dynamic patterns of electrical and mechanical activities and the electrical-mechanical coupling, which can be observed from the reduced entropy (ENTR) (p < 0.01), reduced determinism (DET) (p < 0.01) and reduced trapping time (TT) (p < 0.01) at CA compared to Baseline. The recurrence rate (RR), ENTR, DET, and TT at CPR were significantly lower than the parameters at ROSC but higher than those at CA.

Conclusions: The electrical-mechanical dynamical coupling was sensitive to CPR and able to reflect the changes in cardiac function in the process of CPR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107809DOI Listing

Publication Analysis

Top Keywords

ppg signals
12
electrical-mechanical dynamical
8
dynamical coupling
8
coupling electrocardiographic
8
cardiopulmonary resuscitation
8
cardiovascular function
8
ecg ppg
8
recurrence quantitative
8
quantitative analysis
8
001 reduced
8

Similar Publications

Introduction: Accurate and non-invasive blood glucose estimation is essential for effective health monitoring. Traditional methods are invasive and inconvenient, often leading to poor patient compliance. This study introduces a novel approach that leverages systolic-diastolic framing Mel-frequency cepstral coefficients (SDFMFCC) to enhance the accuracy and reliability of blood glucose estimation using photoplethysmography (PPG) signals.

View Article and Find Full Text PDF

This study explores deep feature representations from photoplethysmography (PPG) signals for coronary artery disease (CAD) identification in 80 participants (40 with CAD). Finger PPG signals were processed using multilayer perceptron (MLP) and convolutional neural network (CNN) autoencoders, with performance assessed via 5-fold cross-validation. The CNN autoencoder model achieved the best results (recall 96.

View Article and Find Full Text PDF

Imaging photoplethysmography (iPPG) is an emerging optical technique that allows for the contactless acquisition of arterial Blood Volume Pulse (BVP) signals from video recordings of the human skin. While iPPG offers a non-contact and convenient means for physiological monitoring, the accuracy of the extracted BVP signals remains limited. This limitation hinders its potential for advanced cardiovascular assessments, such as evaluations of arterial stiffness and cardiac function.

View Article and Find Full Text PDF

Post-occlusive reactive hyperemia (PORH) is a physiological response marked by a transient increase in microvascular perfusion following ischemia. While cutaneous perfusion during PORH has been extensively characterized using optical approaches such as Doppler-based techniques, low-cost alternatives like photoplethysmography (PPG), videocapillaroscopy (VC) and near-infrared reflectance imaging (NIRI) may provide complementary insights into both microvascular and venous dynamics. However, their role in quantifying PORH remains underexplored.

View Article and Find Full Text PDF

Background: Respiratory rate (RR) is a key vital sign and one of the most sensitive indicators of physiological conditions, playing a crucial role in the early identification of clinical deterioration. The monitoring of RR using electrocardiography (ECG) and photoplethysmography (PPG) aims to overcome limitations of traditional methods in clinical settings.

Methods: The proposed approach extracts RR from ECG and PPG signals using different morphological and temporal features from publicly available datasets (iAMwell and Capnobase).

View Article and Find Full Text PDF