Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release.

Methods: Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms.

Discussion: This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours.

Trial Registration: ClinicalTrials.gov Identifier: NCT04852367 . Registered 21 April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Number: 20/EE/0284.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517508PMC
http://dx.doi.org/10.1186/s12885-023-11228-zDOI Listing

Publication Analysis

Top Keywords

pancreatic ductal
16
thermodox® focused
12
phase study
8
chemotherapy delivery
8
doxorubicin thermodox®
8
focused ultrasound
8
ductal adenocarcinomas
8
drug delivery
8
ultrasound-mediated hyperthermia
8
single cycle
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).

View Article and Find Full Text PDF

Significance: Tumor tissues exhibit contrast with healthy tissue in circular degree of polarization (DOP) images via higher magnitude circular DOP values and increased helicity-flipping. This phenomenon may enable polarimetric tumor detection and surgical/procedural guidance applications.

Aim: Depolarization metrics have been shown to exhibit differential responses to healthy and cancer tissue, whereby tumor tissues tend to induce less depolarization; however, the understanding of this depolarization-based contrast remains limited.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF

Background And Objective: CD68 plays a crucial role in promoting phagocytosis. However, its expression level, prognostic value and the correlations with tumor-infiltrating immune cells (TIICs) or common tumor immune checkpoints (TICs) in human digestive system cancers (DSC) remain poorly understood. This study aims to investigate the expression levels, prognostic significance, and clinical implications of CD68, as well as its correlations with six TIICs and four common TICs in DSC.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is highly aggressive with limited curative options, primarily surgical resection. However, only about 20% of the tumors are resectable at diagnosis. Immunotherapies have largely failed in PDAC due to its immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF