Insight into the evolution of microbial communities and resistance genes induced by sucralose in partial nitrification system with triclosan pre-exposure.

J Hazard Mater

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sucralose (SUC), an artificial sweetener widely used in food, beverages and pharmaceuticals, is frequently detected in various environmental matrices. Triclosan (TCS) is commonly used as a disinfectant and often co-exists with SUC in sewage environments. This study investigated the effects of SUC (0.1-10 mg/L) on the transmission of intracellular and extracellular antibiotic resistance genes (ARGs) in the partial nitrification systems with and without TCS pre-exposure. The reactors operated for 150 days, and SUC did not affect ammonia oxidation performance, while TCS led to the maintenance of partial nitrification. The types and abundances of extracellular ARGs in sludge and free ARGs in water increased significantly after TCS pre-exposure when faced SUC stress, which might be caused by a decrease in α-Helix/(β-Sheet + Random coil). SUC was more easily to enrich ARGs in partial nitrification systems with TCS pre-exposure, exacerbating the risk of ARGs transmission. The microbial community showed stronger relationships to cope with the direct stress of SUC, and the functional bacteria (Thauera and Nitrosomonas) in TCS pre-exposure system might be potential hosts of ARGs. This study might provide insights for better understanding the fates of SUC in partial nitrification systems and the ecological risks in wastewater containing TCS and SUC. ENVIRONMENTAL IMPLICATION: Sucralose (SUC) is often detected in the environment and considered as an emerging contaminant due to its soaring consumption and environmental persistence. Triclosan (TCS) is an antibacterial agent that often co-exists with SUC in personal care products and sewage environments. During 150 d, two partial nitrification reactors with and without TCS pre-exposure were established to study the effects of SUC on nitrification performance, antibiotic resistance genes (ARGs) and microbial communities. This study showed the refractory nature of SUC, and SUC led to the transmission of extracellular ARGs in partial nitrification system with TCS pre-exposure, exacerbating the risk of ARGs dissemination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132581DOI Listing

Publication Analysis

Top Keywords

partial nitrification
28
tcs pre-exposure
24
suc
14
resistance genes
12
args partial
12
nitrification systems
12
tcs
10
args
9
microbial communities
8
nitrification
8

Similar Publications

Agricultural nonpoint source pollution (NPSP) is a serious environmental problem globally. Soil nitrogen (N) loss can cause eutrophication. Soil microorganisms are the key factor influencing soil N.

View Article and Find Full Text PDF

Dialysis-assisted control significantly enables stable long-term unaerated partial nitrification in a microalgal-bacterial consortium treating hydrolyzed urine.

Bioresour Technol

August 2025

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 Jiangsu, China. Electronic address:

Source-separated hydrolyzed urine (SSHU), with high ammonium (NH-N) concentration and low carbon-to-nitrogen ratio, presents a critical challenge for conventional biological treatment. This study developed an unaerated microalgal-bacterial consortium (MBC) integrating dialysis to achieve stable partial nitrification (PN) for SSHU treating. This system achieved 166-day stable PN (nitrite accumulation rate >85 %) through three mechanisms: (1) Dialysis and shorten hydraulic retention time (6 d to 2 d) maintained free ammonia (>2.

View Article and Find Full Text PDF

Protozoa-driven micro-food webs are pivotal regulators of microbial community structure and carbon-nitrogen cycling. By mediating trophic cascades that regulate bacterial and algal populations, protozoa influence nutrient remineralization and energy flow. Their regulation is crucial for stabilizing biogeochemical processes and preventing harmful algal blooms.

View Article and Find Full Text PDF

Step-feeding reactor establishment for advanced nitrogen removal from mature landfill leachate via double anammox process with pure floc sludge.

Bioresour Technol

August 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

To address the engineering challenges of high costs, NO sensitivity, and carrier dependency are associated with traditional nitrogen removal processes for treating mature landfill leachate (MLL), this study developed an innovative step-feeding double anammox process. By establishing a pure floc sludge system with gradient carbon source allocation strategy, the nitrogen removal mechanisms under several influent distribution ratios (1:1:1, 4:4:2, 5:3:2) were systematically investigated. The system achieved an anammox contribution of 91.

View Article and Find Full Text PDF

Unraveling the mechanism of dissolved organic matter in enhancing nitrogen removal from leachate wastewater treatment via aerobic granular sludge process.

Water Res

August 2025

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:

The aerobic granular sludge (AGS) process has emerged as a viable alternative to landfill leachate treatment. The mechanisms by which dissolved organic matter (DOM) in landfill leachate, a potential stimulant, is utilized during treatment with AGS systems remain unclear. In this study, we revealed DOM-mediated nitrogen removal in AGS receiving the effluent from up-flow anaerobic sludge blanket (UASB).

View Article and Find Full Text PDF