Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Different biochars have diverse properties, with ambiguous effects on soil nematodes. This study investigated how aspen sawdust (ABC), bamboo powder (BBC), maize straw (MBC) and peanut-shell biochars (PBC) affected Caenorhabditis elegans via culture assays and RNA-seq analysis. The results showed that biochars derived from different agricultural materials varied significantly in physicochemical properties, and PBC produced more volatile organic compounds (VOCs) to attract C. elegans than ABC, BBC and MBC. Moreover, worms in ABC experienced the worst outcomes, while worms in PBC experienced milder impacts. Nematode body length decreased to 724.6 μm, 784.0 μm and 799.7 μm on average in ABC, BBC and MBC, respectively, compared to the control (1052 μm) and PBC treatments (960 μm). The brood size in ABC, MBC, BBC and PBC decreased 41.1%, 39.4%, 39.2% and 19.1% compared to the control, respectively. Furthermore, the molecular mechanisms of biochar-induced developmental effects on C. elegans were explored. Although several differentially expressed genes (DEGs) were different among the four biochars, worm phenotypic changes were mainly related to col genes (col-129; col-140; col-40; col-184), bli-6, sqt-3, perm-2/4, cdk-8, daf-16 and sod-1/2/5, which are associated with cuticle collagen synthesis, eggshell formation in postembryonic growth and rhythmic processes. Our study suggests that different properties of biochars could be crucial to soil nematodes, as well as the worms' biochemical changes are important for the health in agriculture soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516431PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284348PLOS

Publication Analysis

Top Keywords

caenorhabditis elegans
8
soil nematodes
8
abc bbc
8
bbc mbc
8
compared control
8
biochars
5
abc
5
pbc
5
μm
5
effects biochars
4

Similar Publications

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.

View Article and Find Full Text PDF

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF

Decision-making is a ubiquitous component of animal behavior that is often studied in the context of foraging. Foragers make a series of decisions while locating food (food search), choosing between food types (diet or patch choice), and allocating time spent within patches of food (patch-leaving). Here, we introduce a framework for investigating foraging decisions using detailed analysis of individual behavior and quantitative modeling in the nematode .

View Article and Find Full Text PDF