98%
921
2 minutes
20
Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells with short survival times. Understanding the genomic landscape of HSA may aid in developing therapeutic strategies for dogs and may also inform therapies for the rare and aggressive human cancer angiosarcoma. The objectives of this study were to build a framework for leveraging real-world genomic and clinical data that could provide the foundation for precision medicine in veterinary oncology, and to determine the relationships between genomic and clinical features in canine splenic HSA. One hundred and nine dogs with primary splenic HSA treated by splenectomy that had tumour sequencing via the FidoCure® Precision Medicine Platform targeted sequencing panel were enrolled. Patient signalment, weight, metastasis at diagnosis and overall survival time were retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship to patient variables including outcome were assessed. Somatic mutations in TP53 (n = 44), NRAS (n = 20) and PIK3CA (n = 19) were most common. Survival was associated with presence of metastases at diagnosis and germline variants in SETD2 and NOTCH1. Age at diagnosis was associated with somatic NRAS mutations and breed. TP53 and PIK3CA somatic mutations were found in larger dogs, while germline SETD2 variants were found in smaller dogs. We identified both somatic mutations and germline variants associated with clinical variables including age, breed and overall survival. These genetic changes may be useful prognostic factors and provide insight into the genomic landscape of hemangiosarcoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vco.12925 | DOI Listing |
Korean J Clin Oncol
August 2025
Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
Purpose: Multiple primary tumors arising in the same individual pose challenges for precision oncology, particularly in the context of hereditary cancer syndromes such as Lynch syndrome. While these tumors may originate from a shared germline predisposition, it remains unclear whether they also share somatic alterations that could be therapeutically exploited. This study aimed to characterize the extent of somatic genomic overlap between synchronous or metachronous gastric and colorectal cancers within young Korean patients.
View Article and Find Full Text PDFLancet Rheumatol
September 2025
Service de Médecine interne et polyvalente, Centre Hospitalier du Haut-Anjou, Château-Gontier, France; Université d'Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, F-49000 Angers, France. Electronic address:
Infections are increasingly recognised as a major cause of morbidity and mortality in patients with vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. We conducted a systematic review to characterise the infectious burden of VEXAS syndrome and propose preventive strategies. We included 57 studies (813 patients) showing that infections in patients with VEXAS syndrome were frequent, severe in 40-60% of cases, and fatal in 6-15% of cases.
View Article and Find Full Text PDFLancet Rheumatol
September 2025
Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.
Vacuoles, E1 enzyme, X-linked, autoinflammatory, and somatic (VEXAS) syndrome is a newly identified disorder caused by an acquired monogenic somatic UBA1 gene mutation, affecting nuclear and cytoplasmic ubiquitination. This mutation triggers immune dysregulation, leading to diverse clinical and pathological features resembling inflammatory rheumatic diseases. Blood abnormalities stem from myeloid precursor dysfunction, presenting as elevated concentrations of inflammatory markers and cytokines, leukopenia, and macrocytosis.
View Article and Find Full Text PDFJ Autoimmun
September 2025
Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Cellular Genomics Futures Institute & School of Biomedical Sciences, UNSW Sydney, Australia. Electronic address:
Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.
Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.
Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.
Cancer Genet
August 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India. Electronic address:
Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.
View Article and Find Full Text PDF