98%
921
2 minutes
20
Dietary restriction (DR) interventions have demonstrated their efficacy in extending lifespan; however, the association between lifespan extension and health span remains unclear. This article aims to analyze the relationship between DR-induced lifespan and health span in Caenorhabditis elegans (C. elegans), a widely used animal model in lifespan studies. By examining various parameters such as lipofuscin accumulation (an aging marker) and locomotor and feeding capacities (indicators of muscle degradation rate), we have compiled papers that investigate and report on these DR-induced effects.The majority of the papers reviewed consistently demonstrate that DR improves both lifespan and health span in C. elegans. Worms subjected to DR exhibit slower lipofuscin accumulation compared to those fed ad libitum, indicating a reduction in age-related cellular damage. Additionally, DR-treated worms display a higher locomotion capacity, suggesting a slower rate of muscle degradation. However, it is worth noting that there are some discrepancies among the papers regarding feeding capacity. These contradictions can be attributed to the different methods employed to initiate DR. While many approaches slow muscle degeneration and enhance pumping rates through adaptation to limited food sources, other methods, such as using eat-2 mutant worms or interventions that mimic the effects of eat-2, reduce feeding capacity and consequently restrict food intake. In conclusion, the findings suggest a strong correlation between DR-induced longevity and the extension of health span in C. elegans, as evidenced by improvements in various health span parameters. DR interventions not only extend lifespan but also mitigate age-related markers and preserve locomotor capacity. Although conflicting results are observed regarding feeding capacity, the overall evidence supports the notion that DR promotes healthier aging in this animal model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2023.112294 | DOI Listing |
Alzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDFSpan J Psychiatry Ment Health
September 2025
Department Guidance and Counseling, Universitas PGRI Palembang. Indonesia, Jln. Jend. A. Yani, Lr Gotong royong 9/10 Ulu, palembang, Indonesia. Electronic address:
Can Respir J
September 2025
Respiratory Medicine Department, The Fourth People's Hospital of Jinan, Jinan 250031, Shandong, China.
Aspergillus has become the second most common causative agent of invasive fungal infections and is the leading cause of death from fungal infections. English-language publications ranging from 1975 to 2022 collected from the Web of Science Core Collection database were analyzed visually using VOSviewer, R package Bibliometrix, Scimago graphic, Gephi, Pajek, and Microsoft Excel 365. Literature search using the advanced search function in WoSCC with the search formula "TS=(Aspergillus).
View Article and Find Full Text PDFDigit Health
September 2025
Department of Nursing, College of Medical Science, Huzhou University, Zhejiang, China.
Objective: With the rapid integration of digital technologies into healthcare, technophobia has become a key barrier to digital health adoption, especially among older adults. This study aimed to evaluate technophobia levels and identify associated factors within a multidimensional ecological framework.
Methods: A systematic search was conducted across 10 electronic databases for studies published until April 30, 2025.