Changes in nerve growth factor in vastus lateralis muscle after the first versus second bout of one-leg eccentric cycling.

Scand J Med Sci Sports

Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delayed onset muscle soreness (DOMS) develops after performing unaccustomed eccentric exercises. Animal studies have shown that DOMS is mechanical hyperalgesia through nociceptor sensitization induced by nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) upregulated by cyclooxygenase-2 (COX-2). However, no previous study has investigated these in relation to DOMS in humans. This study compared the first and second bouts of one-leg eccentric cycling (ECC) for changes in NGF, GDNF, and COX-2 mRNA in the vastus lateralis (VL). Seven healthy adults (18-40 years) performed two bouts of ECC (10 sets of 50 contractions) with 80% maximal voluntary concentric peak torque separated by 2 weeks (ECC1, ECC2). Muscle soreness that was assessed by a visual analog scale and maximal voluntary isometric contraction (MVC) torque of the knee extensors were measured before, immediately after (MVC only), 24 and 48 h post-exercise. Muscle biopsy was taken from the VL before the first bout from nonexercised leg (control) and 24 h after each bout from the exercised leg, and analyzed for NGF, GDNF, and COX-2 mRNA. Peak DOMS was more than two times greater and MVC torque at 48 h post-exercise was approximately 20% smaller after ECC1 than ECC2 (p < 0.05), suggesting the repeated bout effect. NGF mRNA level was higher (p < 0.05) post-ECC1 (0.79 ± 0.68 arbitrary unit) than control (0.06 ± 0.07) and post-ECC2 (0.08 ± 0.10). GDNF and COX-2 mRNA did not show significant differences between control, post-ECC1, and post-ECC2. These results suggest that an increase in NGF is associated with the development of DOMS in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sms.14497DOI Listing

Publication Analysis

Top Keywords

nerve growth
8
growth factor
8
vastus lateralis
8
one-leg eccentric
8
eccentric cycling
8
muscle soreness
8
ngf gdnf
8
gdnf cox-2
8
cox-2 mrna
8
maximal voluntary
8

Similar Publications

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF

To compare the efficacy of using bone marrow mesenchymal stem cell (BM-MSC) exosomes and injectable platelet rich fibrin (i-PRF) on the submandibular salivary glands (SMGs) of aged albino rats in restoring salivary gland structure and function. A total of 40 healthy male albino rats were used, two for obtaining the BM-MSCs, 10 for i-PRF preparation and seven adult rats (6-8 months old) represented the control group (Group 1). The remaining 21 rats were aged (18-20 months old) and divided into three groups of seven rats each; (Group 2): received no treatment, (Group 3): each rat received a single intraglandular injection of BM-MSC exosomes (50 μg/kg/dose suspended in 0.

View Article and Find Full Text PDF

Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.

View Article and Find Full Text PDF

Magnetic Targeting of AAV Gene Therapy for Inner Ear Following Systemic Delivery: Preliminary Findings and Transduction Pattern in Rat Cochlea.

J Assoc Res Otolaryngol

September 2025

Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.

Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).

Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.

View Article and Find Full Text PDF

Astrocytes play a crucial role in ensuring neuronal survival and function. In stroke, astrocytes trigger the unfolded protein response (UPR) to restore endoplasmic reticulum homeostasis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified endoplasmic reticulum stress-induced neurotrophic factor, attenuates cerebral ischemic injury by reducing inflammatory responses.

View Article and Find Full Text PDF