Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aβ in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aβ induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2258968DOI Listing

Publication Analysis

Top Keywords

drug repositioning
12
ropinirole potential
8
alzheimer's disease
8
sigma-1 receptor
8
radial arm
8
arm maze
8
ropinirole
7
drug
5
side effects
4
effects based
4

Similar Publications

Background: Promiscuity of drugs and targets plays an important role in drug-target prediction, ranging from the explanation of side effects to their exploitation in drug repositioning. A specific form of promiscuity concerns drugs, which interfere with protein-protein interactions. With the rising importance of such drugs in drug discovery and with the large-scale availability of structural data, the question arises on the structural basis of this form of promiscuity and the commonalities of the underlying protein-ligand (PLI) and protein-protein interactions (PPI).

View Article and Find Full Text PDF

Novel approaches to clinical trial design in cancer neuroscience.

Neuron

September 2025

Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Cancer Neuroscience Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson

The emerging field of cancer neuroscience has revealed profound bidirectional interactions between the nervous system and cancer cells, identifying novel therapeutic vulnerabilities across diverse malignancies. This review examines the unique challenges and strategies for translating these insights into effective therapies. We propose innovative approaches to overcome these barriers through drug repurposing, enhanced biomarker development, and optimized trial designs.

View Article and Find Full Text PDF

ARPC1B cancer stem cells (CSCs) in pancreatic cancer are identified as a subpopulation resistant to gemcitabine. In our study, drug repositioning, molecular docking, and surface plasmon resonance (SPR) technique jointly revealed that CK-636 can directly target ARPC1B protein with high affinity. In vitro cytotoxicity, ex vivo organoid cultures, in vivo xenograft and orthotopic gemcitabine-resistant pancreatic cancer model demonstrated that combination therapy of gemcitabine plus CK-636 showed a superior anti-tumor effect compared with gemcitabine monotherapy.

View Article and Find Full Text PDF

Background: Central nervous system (CNS) tumors, including gliomas, are among the most aggressive cancers, with glioblastoma multiforme (GBM) being the most common and lethal. This study explores the potential of multidrug repositioning as a modern chemotherapy strategy for GBM cell lines. It combines the standard GBM chemotherapeutic temozolomide (TMZ) with olaparib (OLA) and oxaliplatin (OXA), both repurposed from other cancer types.

View Article and Find Full Text PDF

The future of pharmaceuticals: Artificial intelligence in drug discovery and development.

J Pharm Anal

August 2025

Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.

Artificial Intelligence (AI) is revolutionizing traditional drug discovery and development models by seamlessly integrating data, computational power, and algorithms. This synergy enhances the efficiency, accuracy, and success rates of drug research, shortens development timelines, and reduces costs. Coupled with machine learning (ML) and deep learning (DL), AI has demonstrated significant advancements across various domains, including drug characterization, target discovery and validation, small molecule drug design, and the acceleration of clinical trials.

View Article and Find Full Text PDF