98%
921
2 minutes
20
Endosulfan (En) is an organochlorine biocide (OCB), that ends up in the environment due to the enzymatic and microsomal activity even though it is not accumulated in living tissue. Endosulfan acts as an organic micro-pollutant which disrupts land as well as aquatic ecosystem. In the present study, we chemically modified endosulfan and conjugated it with a carrier protein to produce an immune response. The generated antibodies were tested for specificity against En, and characterized before further use. Transition Metal Chalcogenides (TMC) showed excellent optoelectrical potential due to its direct bandgap and distinct physical as well as chemical characteristics. Herein, we synthesized a novel nanohybrid using MoSe in combination with graphene oxide (GO) and characterized thoroughly. This was similar to graphene-based metal chalcogenides which were further used in this study to fabricate biosensor for the sensitive detection of En. The in-house developed antibodies (En-Ab) were coupled with the nanohybrid to make MoSe/GO/En-Ab electrode. Fabricated electrode was tested for electrochemical parameters using differential pulse voltammetry (DPV). Working efficiency of the fabricated electrode i.e., limit of detection (LOD), was found to be 7.45 ppt. In conclusion, we hypothesized that the synthesized TMC nanohybrids could be employed for biosensing of endosulfan, and can likely be developed to test field samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117127 | DOI Listing |
ACS Nano
September 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, China.
Electrode contact properties with two-dimensional (2D) channel materials decisively determine the nanodevice's overall performance. A recently synthesized semiconducting CuSe monolayer has emerged as a promising candidate for high-performance device channels due to its high carrier mobility, excellent environmental stability, and a reversible thermal-driven phase transition accompanied by a direct-to-indirect band-gap variation. Herein, to identify promising high-quality electrodes for CuSe, the contact properties with various metals (Al, Ag, Au, Ni, and Co), as well as the modulation effects of graphene and -BN interlayers, are systematically investigated based on first-principles calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati 517619, India.
Aluminum (Al)-ion batteries have gained popularity because of their improved energy density, increased safety, eco-friendliness, abundant Al resources, and extremely attractive three-electron redox, making Al-ion batteries an appealing candidate. However, the progress in Al-ion batteries has been hindered by the unavailability of potential cathode materials that could reversibly host Al ions. In this work, we investigated VSe, a 2D material with a graphene-like layered structure, as a potential cathode for aqueous aluminum-ion batteries.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
The charge density wave (CDW), a charge ordering phase, offers a valuable framework for exploring electron-electron interactions, electron-phonon coupling, and quantum phase transitions. In CDW materials, carrier density substantially influences the ground state, typically altered through foreign ion doping and investigated at macro- or mesoscopic scales via photoemission or transport techniques. However, atomic-scale visualization, particularly in doped CDW systems without foreign ions, remains rare.
View Article and Find Full Text PDFChem Sci
August 2025
School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P. R. China
The exploration of novel compounds with new crystal and electronic structures is essential for advancing the development of functional materials. Here, three novel isomorphic quaternary alkali-metal chalcogenides, AMQ (A = Na, K; M = Sc, Ga and In; Q = S, Se), with a new structure type have been obtained by a facile reactive flux assisted boron-chalcogen solid-state method, and adopt a 3 {[MQ]} open-framework architecture with A ions occupying the cavities to balance charges. Subtle modulation of the M-Q bonds induces a twofold enhancement in optical birefringence (Δ), observed from NaScGaQ (Q = S, Δ = 0.
View Article and Find Full Text PDF