98%
921
2 minutes
20
To generate the orbital-angular-momentum (OAM) modes at multiple wavelengths, which exactly fit with the dense-wavelength-division-multiplex (DWDM) channel grids, is important to the DWDM-based OAM mode-division-multiplex (MDM) fiber communication system. In this study, a full C-band covered and DWDM channelized OAM mode generator is firstly proposed and experimentally demonstrated, which is realized especially by using a broadband helical long-period fiber grating (HLPG) combined with a phase-only sampled multichannel fiber Bragg grating (MFBG). As a proof-of-concept example, the DWDM channelized two complementary 51-channel OAM mode generators have been successfully demonstrated, each of which has a channel spacing of 100 GHz (∼0.8 nm), an effective bandwidth of ∼40 nm, a high azimuthal-mode conversion efficiency of 90%, and high uniformities in both inter- and intra-channel spectra as well. To the best of our knowledge, this is the first time for proposal and experimental demonstration of such a high channel-count and DWDM channelized first-order OAM mode (l = 1) generator, which can also be used for multichannel higher-order OAM mode generation as long as the utilized HLPG is capable of generating a broadband higher-order OAM mode. The proposed device has potential applications to DWDM-based OAM fiber communications, OAM comb lasers, OAM holography, and OAM sensors as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.494946 | DOI Listing |
We study whispering gallery modes (WGMs) of a ring resonator formed by a highly elliptical two-mode fiber. By imparting the twist to the fiber, one can make this system's topology similar to a Möbius stripe's topology. We show that WGMs of such a Möbius ring resonator (MRR) carry intrinsic orbital angular momentum (OAM).
View Article and Find Full Text PDFWe demonstrate a submillimeter-length single-helix chiral grating embedded in a high-numerical-aperture single-mode fiber (HNA-SMF) for efficient generation of third-order orbital angular momentum (OAM), specifically the OAM mode. This design facilitates enhanced coupling of higher azimuthal modes due to significant perturbations arising from both the geometric effect of the thin-core offset under high-NA conditions and the elasto-optic effect induced by intense helical stress with a small twist pitch. As a result, we achieve an unprecedented device length of 0.
View Article and Find Full Text PDFAccurate and rapid measurement of the orbital angular momentum (OAM) spectrum of structured light beams is essential for high-accuracy optical systems and real-time applications based on OAM. In this Letter, we propose and experimentally demonstrate a single-path interferometric technique for full-field reconstruction and OAM mode decomposition. Compared to the standard interferometric technique, our technique significantly improves measurement efficiency and accuracy.
View Article and Find Full Text PDFBy using a polarization-resolved common-path diffraction phase microscope coupled with a spin-to-orbit converter, we experimentally study two-dimensional in-plane distributions of amplitude and phase of light transmitted through a spherulite formed in a frustrated cholesteric liquid crystal cell. These distributions measured at different orientations of the output linear polarizer (analyzer) are used to obtain the orbital angular momentum (OAM) spectra characterizing the OAM content of the beam. The experimental data are found to be in good agreement with the theoretical results describing both the distributions and the OAM spectra based on an analytically designed model of toron-like localized liquid crystal structures.
View Article and Find Full Text PDFIn this paper, we propose a wideband transmitting metasurface to generate orbital angular momentum (OAM) vortex beams for millimeter-wave communication applications, such as advanced wireless systems and 5G/6G networks. Our proposed element comprises four dielectric layers and four conductor layers, with a separation between layers set at 0.2 mm and the thickness throughout of 2.
View Article and Find Full Text PDF